Analisis Kinerja Algoritma Klasifikasi Teks Bert dalam Mendeteksi Berita Hoaks

Metode BERT dapat digunakan untuk menghasilkan hasil yang akurat dalam klasifikasi berita palsu dan berita benar. Hasil evaluasi menunjukkan bahwa model klasifikasi BERT memiliki akurasi sebesar 76% pada data validasi dalam mengklasifikasikan berita hoaks, yang menunjukkan performa atau kinerja mod...

Full description

Saved in:
Bibliographic Details
Main Authors: Assyfa Rasida Hanum, Ivykaeyla Adriana Zetha, Salwa Cahyani Putri, Rafifah Ayud Wulandari, Sherla Puspa Andina, Julia Nur Fajrina, Novanto Yudistira
Format: Article
Language:Indonesian
Published: University of Brawijaya 2024-07-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Subjects:
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/8093
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metode BERT dapat digunakan untuk menghasilkan hasil yang akurat dalam klasifikasi berita palsu dan berita benar. Hasil evaluasi menunjukkan bahwa model klasifikasi BERT memiliki akurasi sebesar 76% pada data validasi dalam mengklasifikasikan berita hoaks, yang menunjukkan performa atau kinerja model Machine Learning dalam melakukan klasifikasi berita hoaks. Sedangkan pada model klasifikasi  BERT Multilingual memiliki akurasi lebih rendah, yakni 63%. Potensi metode ini dapat membantu dalam memerangi penyebaran berita palsu. Penelitian ini berpotensi memberikan kontribusi penting dalam memerangi penyebaran berita palsu di dunia digital yang semakin kompleks. Dengan menggunakan BERT sebagai pendekatan, model ini memungkinkan pengidentifikasian berita palsu yang lebih akurat, serta membantu masyarakat dalam menghindari konsumsi informasi yang salah. Dengan hasil yang positif ini, penelitian ini menunjukkan bagaimana teknologi machine learning dapat digunakan untuk melawan disinformasi dan menjadikan dunia maya menjadi tempat yang lebih terpercaya.
ISSN:2355-7699
2528-6579