Riemann–Roch for the ring $\mathbb{Z}$
We show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-05-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206242364096512 |
---|---|
author | Connes, Alain Consani, Caterina |
author_facet | Connes, Alain Consani, Caterina |
author_sort | Connes, Alain |
collection | DOAJ |
description | We show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of an Arakelov divisor with the sum of the degree of the divisor (using logarithms with base 2) and the number $1$, thus confirming the understanding of the ring $\mathbb{Z}$ as a ring of polynomials in one variable over the absolute base $\mathbb{S}$, namely $\mathbb{S}[X], 1+1=X+X^2$. |
format | Article |
id | doaj-art-825459f6c6184603890323a8c17914d7 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-05-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-825459f6c6184603890323a8c17914d72025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G322923510.5802/crmath.54310.5802/crmath.543Riemann–Roch for the ring $\mathbb{Z}$Connes, Alain0Consani, Caterina1Collège de France, 3 rue d’Ulm F-75005 Paris, France; IHES, 35 Rte de Chartres, 91440 Bures-sur-Yvette, FranceDepartment of Mathematics, Johns Hopkins University, Baltimore MD 21218, USAWe show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of an Arakelov divisor with the sum of the degree of the divisor (using logarithms with base 2) and the number $1$, thus confirming the understanding of the ring $\mathbb{Z}$ as a ring of polynomials in one variable over the absolute base $\mathbb{S}$, namely $\mathbb{S}[X], 1+1=X+X^2$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/ |
spellingShingle | Connes, Alain Consani, Caterina Riemann–Roch for the ring $\mathbb{Z}$ Comptes Rendus. Mathématique |
title | Riemann–Roch for the ring $\mathbb{Z}$ |
title_full | Riemann–Roch for the ring $\mathbb{Z}$ |
title_fullStr | Riemann–Roch for the ring $\mathbb{Z}$ |
title_full_unstemmed | Riemann–Roch for the ring $\mathbb{Z}$ |
title_short | Riemann–Roch for the ring $\mathbb{Z}$ |
title_sort | riemann roch for the ring mathbb z |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/ |
work_keys_str_mv | AT connesalain riemannrochfortheringmathbbz AT consanicaterina riemannrochfortheringmathbbz |