Riemann–Roch for the ring $\mathbb{Z}$

We show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of...

Full description

Saved in:
Bibliographic Details
Main Authors: Connes, Alain, Consani, Caterina
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206242364096512
author Connes, Alain
Consani, Caterina
author_facet Connes, Alain
Consani, Caterina
author_sort Connes, Alain
collection DOAJ
description We show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of an Arakelov divisor with the sum of the degree of the divisor (using logarithms with base 2) and the number $1$, thus confirming the understanding of the ring $\mathbb{Z}$ as a ring of polynomials in one variable over the absolute base $\mathbb{S}$, namely $\mathbb{S}[X], 1+1=X+X^2$.
format Article
id doaj-art-825459f6c6184603890323a8c17914d7
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-825459f6c6184603890323a8c17914d72025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G322923510.5802/crmath.54310.5802/crmath.543Riemann–Roch for the ring $\mathbb{Z}$Connes, Alain0Consani, Caterina1Collège de France, 3 rue d’Ulm F-75005 Paris, France; IHES, 35 Rte de Chartres, 91440 Bures-sur-Yvette, FranceDepartment of Mathematics, Johns Hopkins University, Baltimore MD 21218, USAWe show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of an Arakelov divisor with the sum of the degree of the divisor (using logarithms with base 2) and the number $1$, thus confirming the understanding of the ring $\mathbb{Z}$ as a ring of polynomials in one variable over the absolute base $\mathbb{S}$, namely $\mathbb{S}[X], 1+1=X+X^2$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/
spellingShingle Connes, Alain
Consani, Caterina
Riemann–Roch for the ring $\mathbb{Z}$
Comptes Rendus. Mathématique
title Riemann–Roch for the ring $\mathbb{Z}$
title_full Riemann–Roch for the ring $\mathbb{Z}$
title_fullStr Riemann–Roch for the ring $\mathbb{Z}$
title_full_unstemmed Riemann–Roch for the ring $\mathbb{Z}$
title_short Riemann–Roch for the ring $\mathbb{Z}$
title_sort riemann roch for the ring mathbb z
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/
work_keys_str_mv AT connesalain riemannrochfortheringmathbbz
AT consanicaterina riemannrochfortheringmathbbz