Riemann–Roch for the ring $\mathbb{Z}$
We show that by working over the absolute base $\mathbb{S}$ (the categorical version of the sphere spectrum) instead of ${\mathbb{S}[\pm 1]}$ improves our previous Riemann–Roch formula for ${\overline{\operatorname{Spec}\mathbb{Z}}}$. The formula equates the (integer valued) Euler characteristic of...
Saved in:
Main Authors: | Connes, Alain, Consani, Caterina |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-05-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.543/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Distribution of matrices over $\mathbb{F}_q[x]$
by: Ji, Yibo
Published: (2024-10-01) -
A note on the Riemann ξ-function
by: Ramūnas Garunkštis
Published: (2000-12-01) -
Odd logarithmic moments of the Riemann zeta-function
by: Antanas Laurinčikas
Published: (1999-12-01) -
A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
by: Druel, Stéphane, et al.
Published: (2024-06-01) -
On the Mellin transforms of the fourth power of the Riemann zeta-function
by: Violeta Balinskaitė
Published: (2023-09-01)