Easy, fast and reproducible Stochastic Cellular Automata with chouca

Stochastic cellular automata (SCA) are models that describe spatial dynamics using a grid of cells that switch between discrete states over time. They are widely used to understand how small-scale processes scale up to affect ecological dynamics at larger spatial scales, and have been applied to a w...

Full description

Saved in:
Bibliographic Details
Main Authors: Génin, Alexandre, Dupont, Guillaume, Valencia, Daniel, Zucconi, Mauro, Ávila-Thieme, M. Isidora, Navarrete, Sergio A., Wieters, Evie A.
Format: Article
Language:English
Published: Peer Community In 2024-10-01
Series:Peer Community Journal
Subjects:
Online Access:https://peercommunityjournal.org/articles/10.24072/pcjournal.466/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206410079633408
author Génin, Alexandre
Dupont, Guillaume
Valencia, Daniel
Zucconi, Mauro
Ávila-Thieme, M. Isidora
Navarrete, Sergio A.
Wieters, Evie A.
author_facet Génin, Alexandre
Dupont, Guillaume
Valencia, Daniel
Zucconi, Mauro
Ávila-Thieme, M. Isidora
Navarrete, Sergio A.
Wieters, Evie A.
author_sort Génin, Alexandre
collection DOAJ
description Stochastic cellular automata (SCA) are models that describe spatial dynamics using a grid of cells that switch between discrete states over time. They are widely used to understand how small-scale processes scale up to affect ecological dynamics at larger spatial scales, and have been applied to a wide diversity of theoretical and applied problems in all systems, such as arid ecosystems, coral reefs, forests, bacteria, or urban growth. Despite their wide applications, SCA implementations are often ad-hoc, lacking performance, guarantees of correctness and poorly reproducible. De novo implementation of SCA for each specific system and application also represents a major barrier for many practitioners. To provide a unifying, well-tested technical basis to this class of models and facilitate their implementation, we built chouca, an R package that translates definitions of SCA models into compiled code, and runs simulations in an efficient way. chouca supports SCA based on rectangular grids where transition probabilities are defined for each cell, with performance typically two to three orders of magnitude above typical implementations in interpreted languages (e.g. R, Python), all while maintaining an intuitive interface in the R environment. Exact and mean-field simulations can be run, and both numerical and graphical results can be easily exported. Besides providing better reproducibility and accessibility, a fast engine for SCA unlocks novel, computationally intensive statistical approaches, such as simulation-based inference of ecological interactions from field data, which represents by itself an important avenue for research. By providing an easy and efficient entry point to SCAs, chouca lowers the bar to the use of this class of models for ecologists, managers and general practitioners, providing a leveled-off reproducible platform while opening novel methodological approaches.
format Article
id doaj-art-84e967fcba7c4bd28bacfd64aae2b5d4
institution Kabale University
issn 2804-3871
language English
publishDate 2024-10-01
publisher Peer Community In
record_format Article
series Peer Community Journal
spelling doaj-art-84e967fcba7c4bd28bacfd64aae2b5d42025-02-07T10:17:17ZengPeer Community InPeer Community Journal2804-38712024-10-01410.24072/pcjournal.46610.24072/pcjournal.466Easy, fast and reproducible Stochastic Cellular Automata with chouca Génin, Alexandre0https://orcid.org/0000-0002-3333-1338Dupont, Guillaume1Valencia, Daniel2Zucconi, Mauro3Ávila-Thieme, M. Isidora4Navarrete, Sergio A.5https://orcid.org/0000-0003-4021-3863Wieters, Evie A.6https://orcid.org/0009-0001-1642-6466Copernicus Institute of Sustainable Development, Utrecht University – Utrecht, The Netherlands; Estación Costera de Investigaciones Marinas (ECIM) and Núcleo Milenio para la Ecología y Conservación de los Ecosistemas de Arrecifes Mesofóticos Templados (NUTME), Pontificia Universidad Católica de Chile – Las Cruces, Chile; Experimental and Theoretical Ecology Station, Centre National de la Recherche Scientifique – Moulis, FranceEstación Costera de Investigaciones Marinas (ECIM) and Núcleo Milenio para la Ecología y Conservación de los Ecosistemas de Arrecifes Mesofóticos Templados (NUTME), Pontificia Universidad Católica de Chile – Las Cruces, Chile; International Master of Science in Marine Biological Resources (IMBRSea), Ghent University – Ghent, BelgiumEstación Costera de Investigaciones Marinas (ECIM) and Núcleo Milenio para la Ecología y Conservación de los Ecosistemas de Arrecifes Mesofóticos Templados (NUTME), Pontificia Universidad Católica de Chile – Las Cruces, ChileEstación Costera de Investigaciones Marinas (ECIM) and Núcleo Milenio para la Ecología y Conservación de los Ecosistemas de Arrecifes Mesofóticos Templados (NUTME), Pontificia Universidad Católica de Chile – Las Cruces, Chile; Centro de Investigación Oceanográfica en el Pacifico Sur-Oriental (COPAS COASTAL), Universidad de Concepción – Concepción, ChileEscuela de Negocios, Facultad de Ciencias Sociales y Artes, Universidad Mayor – Temuco, Chile; Center for Resilience, Adaptation and Mitigation (CReAM), Universidad Mayor – Temuco, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Pontificia Universidad Católica de Chile – Santiago, Chile; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile – Santiago, ChileEstación Costera de Investigaciones Marinas (ECIM) and Núcleo Milenio para la Ecología y Conservación de los Ecosistemas de Arrecifes Mesofóticos Templados (NUTME), Pontificia Universidad Católica de Chile – Las Cruces, Chile; Centro de Investigación Oceanográfica en el Pacifico Sur-Oriental (COPAS COASTAL), Universidad de Concepción – Concepción, Chile; Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile – Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Pontificia Universidad Católica de Chile – Santiago, ChileEstación Costera de Investigaciones Marinas (ECIM) and Núcleo Milenio para la Ecología y Conservación de los Ecosistemas de Arrecifes Mesofóticos Templados (NUTME), Pontificia Universidad Católica de Chile – Las Cruces, ChileStochastic cellular automata (SCA) are models that describe spatial dynamics using a grid of cells that switch between discrete states over time. They are widely used to understand how small-scale processes scale up to affect ecological dynamics at larger spatial scales, and have been applied to a wide diversity of theoretical and applied problems in all systems, such as arid ecosystems, coral reefs, forests, bacteria, or urban growth. Despite their wide applications, SCA implementations are often ad-hoc, lacking performance, guarantees of correctness and poorly reproducible. De novo implementation of SCA for each specific system and application also represents a major barrier for many practitioners. To provide a unifying, well-tested technical basis to this class of models and facilitate their implementation, we built chouca, an R package that translates definitions of SCA models into compiled code, and runs simulations in an efficient way. chouca supports SCA based on rectangular grids where transition probabilities are defined for each cell, with performance typically two to three orders of magnitude above typical implementations in interpreted languages (e.g. R, Python), all while maintaining an intuitive interface in the R environment. Exact and mean-field simulations can be run, and both numerical and graphical results can be easily exported. Besides providing better reproducibility and accessibility, a fast engine for SCA unlocks novel, computationally intensive statistical approaches, such as simulation-based inference of ecological interactions from field data, which represents by itself an important avenue for research. By providing an easy and efficient entry point to SCAs, chouca lowers the bar to the use of this class of models for ecologists, managers and general practitioners, providing a leveled-off reproducible platform while opening novel methodological approaches.https://peercommunityjournal.org/articles/10.24072/pcjournal.466/spatial ecologyspatial modellingstochastic cellular automatonR packagechouca
spellingShingle Génin, Alexandre
Dupont, Guillaume
Valencia, Daniel
Zucconi, Mauro
Ávila-Thieme, M. Isidora
Navarrete, Sergio A.
Wieters, Evie A.
Easy, fast and reproducible Stochastic Cellular Automata with chouca
Peer Community Journal
spatial ecology
spatial modelling
stochastic cellular automaton
R package
chouca
title Easy, fast and reproducible Stochastic Cellular Automata with chouca
title_full Easy, fast and reproducible Stochastic Cellular Automata with chouca
title_fullStr Easy, fast and reproducible Stochastic Cellular Automata with chouca
title_full_unstemmed Easy, fast and reproducible Stochastic Cellular Automata with chouca
title_short Easy, fast and reproducible Stochastic Cellular Automata with chouca
title_sort easy fast and reproducible stochastic cellular automata with chouca
topic spatial ecology
spatial modelling
stochastic cellular automaton
R package
chouca
url https://peercommunityjournal.org/articles/10.24072/pcjournal.466/
work_keys_str_mv AT geninalexandre easyfastandreproduciblestochasticcellularautomatawithchouca
AT dupontguillaume easyfastandreproduciblestochasticcellularautomatawithchouca
AT valenciadaniel easyfastandreproduciblestochasticcellularautomatawithchouca
AT zucconimauro easyfastandreproduciblestochasticcellularautomatawithchouca
AT avilathiememisidora easyfastandreproduciblestochasticcellularautomatawithchouca
AT navarretesergioa easyfastandreproduciblestochasticcellularautomatawithchouca
AT wieterseviea easyfastandreproduciblestochasticcellularautomatawithchouca