Further than Descartes’ rule of signs

The sign pattern defined by the real polynomial $Q:=\Sigma _{j=0}^da_jx^j$, $a_j\ne 0$, is the string $\sigma (Q):=(\mathrm{sgn}(a_d),\ldots ,\mathrm{sgn}(a_0))$. The quantities $\mathrm{pos}$ and $\mathrm{neg}$ of positive and negative roots of $Q$ satisfy Descartes’ rule of signs. A couple $(\sigm...

Full description

Saved in:
Bibliographic Details
Main Authors: Gati, Yousra, Kostov, Vladimir Petrov, Tarchi, Mohamed Chaouki
Format: Article
Language:English
Published: Académie des sciences 2024-10-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.610/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206164919418880
author Gati, Yousra
Kostov, Vladimir Petrov
Tarchi, Mohamed Chaouki
author_facet Gati, Yousra
Kostov, Vladimir Petrov
Tarchi, Mohamed Chaouki
author_sort Gati, Yousra
collection DOAJ
description The sign pattern defined by the real polynomial $Q:=\Sigma _{j=0}^da_jx^j$, $a_j\ne 0$, is the string $\sigma (Q):=(\mathrm{sgn}(a_d),\ldots ,\mathrm{sgn}(a_0))$. The quantities $\mathrm{pos}$ and $\mathrm{neg}$ of positive and negative roots of $Q$ satisfy Descartes’ rule of signs. A couple $(\sigma _0,(\mathrm{pos},\mathrm{neg}))$, where $\sigma _0$ is a sign pattern of length $d+1$, is realizable if there exists a polynomial $Q$ with $\mathrm{pos}$ positive and $\mathrm{neg}$ negative simple roots, with $(d-\mathrm{pos}-\mathrm{neg})/2$ complex conjugate pairs and with $\sigma (Q)=\sigma _0$. We present a series of couples (sign pattern, pair $(\mathrm{pos},\mathrm{neg})$) depending on two integer parameters and with $\mathrm{pos}\ge 1$, $\mathrm{neg}\ge 1$, which is not realizable. For $d=9$, we give the exhaustive list of realizable couples with two sign changes in the sign pattern.
format Article
id doaj-art-85fa70d0c8e4420aa38fcb889feeb57d
institution Kabale University
issn 1778-3569
language English
publishDate 2024-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-85fa70d0c8e4420aa38fcb889feeb57d2025-02-07T11:22:49ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-10-01362G886388110.5802/crmath.61010.5802/crmath.610Further than Descartes’ rule of signsGati, Yousra0Kostov, Vladimir Petrov1Tarchi, Mohamed Chaouki2Université de Carthage, EPT-LIM, TunisieUniversité Côte d’Azur, CNRS, LJAD, FranceUniversité de Carthage, EPT-LIM, TunisieThe sign pattern defined by the real polynomial $Q:=\Sigma _{j=0}^da_jx^j$, $a_j\ne 0$, is the string $\sigma (Q):=(\mathrm{sgn}(a_d),\ldots ,\mathrm{sgn}(a_0))$. The quantities $\mathrm{pos}$ and $\mathrm{neg}$ of positive and negative roots of $Q$ satisfy Descartes’ rule of signs. A couple $(\sigma _0,(\mathrm{pos},\mathrm{neg}))$, where $\sigma _0$ is a sign pattern of length $d+1$, is realizable if there exists a polynomial $Q$ with $\mathrm{pos}$ positive and $\mathrm{neg}$ negative simple roots, with $(d-\mathrm{pos}-\mathrm{neg})/2$ complex conjugate pairs and with $\sigma (Q)=\sigma _0$. We present a series of couples (sign pattern, pair $(\mathrm{pos},\mathrm{neg})$) depending on two integer parameters and with $\mathrm{pos}\ge 1$, $\mathrm{neg}\ge 1$, which is not realizable. For $d=9$, we give the exhaustive list of realizable couples with two sign changes in the sign pattern.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.610/Real polynomial in one variablehyperbolic polynomialsign patternDescartes’ rule of signs
spellingShingle Gati, Yousra
Kostov, Vladimir Petrov
Tarchi, Mohamed Chaouki
Further than Descartes’ rule of signs
Comptes Rendus. Mathématique
Real polynomial in one variable
hyperbolic polynomial
sign pattern
Descartes’ rule of signs
title Further than Descartes’ rule of signs
title_full Further than Descartes’ rule of signs
title_fullStr Further than Descartes’ rule of signs
title_full_unstemmed Further than Descartes’ rule of signs
title_short Further than Descartes’ rule of signs
title_sort further than descartes rule of signs
topic Real polynomial in one variable
hyperbolic polynomial
sign pattern
Descartes’ rule of signs
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.610/
work_keys_str_mv AT gatiyousra furtherthandescartesruleofsigns
AT kostovvladimirpetrov furtherthandescartesruleofsigns
AT tarchimohamedchaouki furtherthandescartesruleofsigns