Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA model

Background. Dengue is a public health problem that leads to death. This disease is necessary to monitor to reduce its impact on the community. Purpose. This study aims to forecast the incidence of dengue in Bandung City using historical data from 2014 to 2023. Method. This retrospective observ...

Full description

Saved in:
Bibliographic Details
Main Authors: Agung Sutriyawan, Martini Martini, Dwi Sutiningsih, Farid Agushybana, Nur Endah Wahyuningsih, Victor Eneojo Adamu, Hairil Akbar, Matheus Aba
Format: Article
Language:Russian
Published: Central Research Institute for Epidemiology 2024-12-01
Series:Журнал микробиологии, эпидемиологии и иммунобиологии
Subjects:
Online Access:https://microbiol.crie.ru/jour/article/viewFile/18631/1554
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825208816631808000
author Agung Sutriyawan
Martini Martini
Dwi Sutiningsih
Farid Agushybana
Nur Endah Wahyuningsih
Victor Eneojo Adamu
Hairil Akbar
Matheus Aba
author_facet Agung Sutriyawan
Martini Martini
Dwi Sutiningsih
Farid Agushybana
Nur Endah Wahyuningsih
Victor Eneojo Adamu
Hairil Akbar
Matheus Aba
author_sort Agung Sutriyawan
collection DOAJ
description Background. Dengue is a public health problem that leads to death. This disease is necessary to monitor to reduce its impact on the community. Purpose. This study aims to forecast the incidence of dengue in Bandung City using historical data from 2014 to 2023. Method. This retrospective observational study examined dengue incidence in Bandung City from 2014 to 2023, secondary data were processed and analysed using Autoregressive Integrated Moving Average (ARIMA) model to forecast dengue incidence. Results. The best model generated is ARIMA (3,0,3), Mean Absolute Percentage Error (MAPE = 33,3437) and Akaike Information Criterion (AIC = 0,1489). Based on the model, the peak of dengue cases is estimated to occur in September 2024 (320 cases). Conclusion. The peak incidence of dengue in Bandung City will occur in September 2024. Hence the need for vector control efforts in several sub-districts and increasing efforts to prevent and control dengue.
format Article
id doaj-art-89febef8cd354c87bc2f4224539802ae
institution Kabale University
issn 0372-9311
2686-7613
language Russian
publishDate 2024-12-01
publisher Central Research Institute for Epidemiology
record_format Article
series Журнал микробиологии, эпидемиологии и иммунобиологии
spelling doaj-art-89febef8cd354c87bc2f4224539802ae2025-02-06T21:11:32ZrusCentral Research Institute for EpidemiologyЖурнал микробиологии, эпидемиологии и иммунобиологии0372-93112686-76132024-12-01101680381110.36233/0372-9311-5702801Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA modelAgung Sutriyawan0https://orcid.org/0000-0002-6119-6073Martini Martini1https://orcid.org/0000-0002-6773-1727Dwi Sutiningsih2https://orcid.org/0000-0002-4128-6688Farid Agushybana3https://orcid.org/0000-0002-8557-370XNur Endah Wahyuningsih4https://orcid.org/0000-0002-1358-1823Victor Eneojo Adamu5https://orcid.org/0000-0003-3352-0021Hairil Akbar6https://orcid.org/0000-0002-6672-9174Matheus Aba7https://orcid.org/0009-0009-1379-881XDiponegoro UniversityDiponegoro UniversityBhakti Kencana UniversityDiponegoro UniversityDiponegoro UniversityEuclid UniversityGraha Medika Institute of Health and TechnologyWirautama College of Health SciencesBackground. Dengue is a public health problem that leads to death. This disease is necessary to monitor to reduce its impact on the community. Purpose. This study aims to forecast the incidence of dengue in Bandung City using historical data from 2014 to 2023. Method. This retrospective observational study examined dengue incidence in Bandung City from 2014 to 2023, secondary data were processed and analysed using Autoregressive Integrated Moving Average (ARIMA) model to forecast dengue incidence. Results. The best model generated is ARIMA (3,0,3), Mean Absolute Percentage Error (MAPE = 33,3437) and Akaike Information Criterion (AIC = 0,1489). Based on the model, the peak of dengue cases is estimated to occur in September 2024 (320 cases). Conclusion. The peak incidence of dengue in Bandung City will occur in September 2024. Hence the need for vector control efforts in several sub-districts and increasing efforts to prevent and control dengue.https://microbiol.crie.ru/jour/article/viewFile/18631/1554dengue incidencedengue forecastarima modeloutbreak predictionindonesia
spellingShingle Agung Sutriyawan
Martini Martini
Dwi Sutiningsih
Farid Agushybana
Nur Endah Wahyuningsih
Victor Eneojo Adamu
Hairil Akbar
Matheus Aba
Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA model
Журнал микробиологии, эпидемиологии и иммунобиологии
dengue incidence
dengue forecast
arima model
outbreak prediction
indonesia
title Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA model
title_full Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA model
title_fullStr Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA model
title_full_unstemmed Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA model
title_short Time series analysis of dengue incidence in Bandung City, Indonesia using a ARIMA model
title_sort time series analysis of dengue incidence in bandung city indonesia using a arima model
topic dengue incidence
dengue forecast
arima model
outbreak prediction
indonesia
url https://microbiol.crie.ru/jour/article/viewFile/18631/1554
work_keys_str_mv AT agungsutriyawan timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel
AT martinimartini timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel
AT dwisutiningsih timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel
AT faridagushybana timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel
AT nurendahwahyuningsih timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel
AT victoreneojoadamu timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel
AT hairilakbar timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel
AT matheusaba timeseriesanalysisofdengueincidenceinbandungcityindonesiausingaarimamodel