On Gaussian interpolation inequalities

This paper is devoted to Gaussian interpolation inequalities with endpoint cases corresponding to the Gaussian Poincaré and the logarithmic Sobolev inequalities, seen as limits in large dimensions of Gagliardo–Nirenberg–Sobolev inequalities on spheres. Entropy methods are investigated using not only...

Full description

Saved in:
Bibliographic Details
Main Authors: Brigati, Giovanni, Dolbeault, Jean, Simonov, Nikita
Format: Article
Language:English
Published: Académie des sciences 2024-02-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.488/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206245308497920
author Brigati, Giovanni
Dolbeault, Jean
Simonov, Nikita
author_facet Brigati, Giovanni
Dolbeault, Jean
Simonov, Nikita
author_sort Brigati, Giovanni
collection DOAJ
description This paper is devoted to Gaussian interpolation inequalities with endpoint cases corresponding to the Gaussian Poincaré and the logarithmic Sobolev inequalities, seen as limits in large dimensions of Gagliardo–Nirenberg–Sobolev inequalities on spheres. Entropy methods are investigated using not only heat flow techniques but also nonlinear diffusion equations as on spheres. A new stability result is established for the Gaussian measure, which is directly inspired by recent results for spheres.
format Article
id doaj-art-8bed2de163284c1792c393bcd6b0fd98
institution Kabale University
issn 1778-3569
language English
publishDate 2024-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-8bed2de163284c1792c393bcd6b0fd982025-02-07T11:12:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-02-01362G1214410.5802/crmath.48810.5802/crmath.488On Gaussian interpolation inequalitiesBrigati, Giovanni0https://orcid.org/0000-0002-3698-9995Dolbeault, Jean1https://orcid.org/0000-0003-4234-2298Simonov, Nikita2https://orcid.org/0000-0002-3241-190XCEREMADE (CNRS UMR n ∘  7534), PSL University, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris 16, FranceCEREMADE (CNRS UMR n ∘  7534), PSL University, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris 16, FranceLJLL (CNRS UMR n ∘  7598) Sorbonne Université, 4 place Jussieu, 75005 Paris, FranceThis paper is devoted to Gaussian interpolation inequalities with endpoint cases corresponding to the Gaussian Poincaré and the logarithmic Sobolev inequalities, seen as limits in large dimensions of Gagliardo–Nirenberg–Sobolev inequalities on spheres. Entropy methods are investigated using not only heat flow techniques but also nonlinear diffusion equations as on spheres. A new stability result is established for the Gaussian measure, which is directly inspired by recent results for spheres.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.488/logarithmic Sobolev inequalityGagliardo–Nirenberg–Sobolev inequalitiesGaussian Poincaré inequalityspherespectral decompositionentropy methodsOrnstein–Uhlenbeck operatornonlinear diffusionsimproved inequalitiesstability
spellingShingle Brigati, Giovanni
Dolbeault, Jean
Simonov, Nikita
On Gaussian interpolation inequalities
Comptes Rendus. Mathématique
logarithmic Sobolev inequality
Gagliardo–Nirenberg–Sobolev inequalities
Gaussian Poincaré inequality
sphere
spectral decomposition
entropy methods
Ornstein–Uhlenbeck operator
nonlinear diffusions
improved inequalities
stability
title On Gaussian interpolation inequalities
title_full On Gaussian interpolation inequalities
title_fullStr On Gaussian interpolation inequalities
title_full_unstemmed On Gaussian interpolation inequalities
title_short On Gaussian interpolation inequalities
title_sort on gaussian interpolation inequalities
topic logarithmic Sobolev inequality
Gagliardo–Nirenberg–Sobolev inequalities
Gaussian Poincaré inequality
sphere
spectral decomposition
entropy methods
Ornstein–Uhlenbeck operator
nonlinear diffusions
improved inequalities
stability
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.488/
work_keys_str_mv AT brigatigiovanni ongaussianinterpolationinequalities
AT dolbeaultjean ongaussianinterpolationinequalities
AT simonovnikita ongaussianinterpolationinequalities