Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics

The polar decomposition $X=WR$, with $X \in \mathrm{GL}(n, \mathbb{R})$, $W \in \mathcal{S}_+(n)$, and $R \in \mathcal{O}_n$, suggests a right action of the orthogonal group $\mathcal{O}_n$ on the general linear group $\mathrm{GL}(n, \mathbb{R})$. Equipped with the Frobenius metric, the $ \mathcal{O...

Full description

Saved in:
Bibliographic Details
Main Authors: Bisson, Olivier, Pennec, Xavier
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.692/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206166647472128
author Bisson, Olivier
Pennec, Xavier
author_facet Bisson, Olivier
Pennec, Xavier
author_sort Bisson, Olivier
collection DOAJ
description The polar decomposition $X=WR$, with $X \in \mathrm{GL}(n, \mathbb{R})$, $W \in \mathcal{S}_+(n)$, and $R \in \mathcal{O}_n$, suggests a right action of the orthogonal group $\mathcal{O}_n$ on the general linear group $\mathrm{GL}(n, \mathbb{R})$. Equipped with the Frobenius metric, the $ \mathcal{O}_n $-principal bundle $\pi : X \in \mathrm{GL}(n, \mathbb{R}) \mapsto X\mathcal{O}_n \in \mathrm{GL} (n, \mathbb{R}) / \mathcal{O}_n$ becomes a Riemannian submersion. In this note, we derive an expression for the derivative of its unique symmetric section $ s \circ \pi $ in any dimension, in terms of a solution to a Sylvester equation. We discuss how to solve this type of equation and verify that our formula coincides with those derived in the literature for low dimensions. We apply our result to the characterization of geodesics of the Frobenius metric in the quotient space $\mathrm{GL} (n, \mathbb{R}) / \mathcal{O}_n$.
format Article
id doaj-art-8c0eb5bb70254b238914f3dc898e5d48
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-8c0eb5bb70254b238914f3dc898e5d482025-02-07T11:26:38ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G121847185610.5802/crmath.69210.5802/crmath.692Differential of the Stretch Tensor for Any Dimension with Applications to Quotient GeodesicsBisson, Olivier0Pennec, Xavier1Université Côte d’Azur, INRIA, FranceUniversité Côte d’Azur, INRIA, FranceThe polar decomposition $X=WR$, with $X \in \mathrm{GL}(n, \mathbb{R})$, $W \in \mathcal{S}_+(n)$, and $R \in \mathcal{O}_n$, suggests a right action of the orthogonal group $\mathcal{O}_n$ on the general linear group $\mathrm{GL}(n, \mathbb{R})$. Equipped with the Frobenius metric, the $ \mathcal{O}_n $-principal bundle $\pi : X \in \mathrm{GL}(n, \mathbb{R}) \mapsto X\mathcal{O}_n \in \mathrm{GL} (n, \mathbb{R}) / \mathcal{O}_n$ becomes a Riemannian submersion. In this note, we derive an expression for the derivative of its unique symmetric section $ s \circ \pi $ in any dimension, in terms of a solution to a Sylvester equation. We discuss how to solve this type of equation and verify that our formula coincides with those derived in the literature for low dimensions. We apply our result to the characterization of geodesics of the Frobenius metric in the quotient space $\mathrm{GL} (n, \mathbb{R}) / \mathcal{O}_n$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.692/Polar Decompositionstretch Tensorquotient Geodesics
spellingShingle Bisson, Olivier
Pennec, Xavier
Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
Comptes Rendus. Mathématique
Polar Decomposition
stretch Tensor
quotient Geodesics
title Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
title_full Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
title_fullStr Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
title_full_unstemmed Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
title_short Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
title_sort differential of the stretch tensor for any dimension with applications to quotient geodesics
topic Polar Decomposition
stretch Tensor
quotient Geodesics
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.692/
work_keys_str_mv AT bissonolivier differentialofthestretchtensorforanydimensionwithapplicationstoquotientgeodesics
AT pennecxavier differentialofthestretchtensorforanydimensionwithapplicationstoquotientgeodesics