Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs

Let $(X, \Delta )$ be a compact Kähler klt pair, where $K_X + \Delta $ is ample or numerically trivial, and $\Delta $ has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for $(X, \Delta )$, then its orbifold universal cover is either the unit ball (ample...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudon, Benoît, Graf, Patrick, Guenancia, Henri
Format: Article
Language:English
Published: Académie des sciences 2024-06-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206246166233088
author Claudon, Benoît
Graf, Patrick
Guenancia, Henri
author_facet Claudon, Benoît
Graf, Patrick
Guenancia, Henri
author_sort Claudon, Benoît
collection DOAJ
description Let $(X, \Delta )$ be a compact Kähler klt pair, where $K_X + \Delta $ is ample or numerically trivial, and $\Delta $ has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for $(X, \Delta )$, then its orbifold universal cover is either the unit ball (ample case) or the affine space (numerically trivial case).
format Article
id doaj-art-8d13e760c0d24a40beaf4c8784f97ce5
institution Kabale University
issn 1778-3569
language English
publishDate 2024-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-8d13e760c0d24a40beaf4c8784f97ce52025-02-07T11:13:30ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-06-01362S1558110.5802/crmath.59910.5802/crmath.599Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairsClaudon, Benoît0Graf, Patrick1Guenancia, Henri2Univ Rennes, CNRS, IRMAR – UMR 6625, 35000 Rennes, France et Institut Universitaire de FranceLehrstuhl für Mathematik I, Universität Bayreuth, 95440 Bayreuth, GermanyInstitut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, FranceLet $(X, \Delta )$ be a compact Kähler klt pair, where $K_X + \Delta $ is ample or numerically trivial, and $\Delta $ has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for $(X, \Delta )$, then its orbifold universal cover is either the unit ball (ample case) or the affine space (numerically trivial case).https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/Miyaoka–Yau inequalityorbifold uniformizationklt pairs
spellingShingle Claudon, Benoît
Graf, Patrick
Guenancia, Henri
Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
Comptes Rendus. Mathématique
Miyaoka–Yau inequality
orbifold uniformization
klt pairs
title Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
title_full Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
title_fullStr Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
title_full_unstemmed Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
title_short Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
title_sort equality in the miyaoka yau inequality and uniformization of non positively curved klt pairs
topic Miyaoka–Yau inequality
orbifold uniformization
klt pairs
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/
work_keys_str_mv AT claudonbenoit equalityinthemiyaokayauinequalityanduniformizationofnonpositivelycurvedkltpairs
AT grafpatrick equalityinthemiyaokayauinequalityanduniformizationofnonpositivelycurvedkltpairs
AT guenanciahenri equalityinthemiyaokayauinequalityanduniformizationofnonpositivelycurvedkltpairs