Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
Let $(X, \Delta )$ be a compact Kähler klt pair, where $K_X + \Delta $ is ample or numerically trivial, and $\Delta $ has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for $(X, \Delta )$, then its orbifold universal cover is either the unit ball (ample...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-06-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206246166233088 |
---|---|
author | Claudon, Benoît Graf, Patrick Guenancia, Henri |
author_facet | Claudon, Benoît Graf, Patrick Guenancia, Henri |
author_sort | Claudon, Benoît |
collection | DOAJ |
description | Let $(X, \Delta )$ be a compact Kähler klt pair, where $K_X + \Delta $ is ample or numerically trivial, and $\Delta $ has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for $(X, \Delta )$, then its orbifold universal cover is either the unit ball (ample case) or the affine space (numerically trivial case). |
format | Article |
id | doaj-art-8d13e760c0d24a40beaf4c8784f97ce5 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-06-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-8d13e760c0d24a40beaf4c8784f97ce52025-02-07T11:13:30ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-06-01362S1558110.5802/crmath.59910.5802/crmath.599Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairsClaudon, Benoît0Graf, Patrick1Guenancia, Henri2Univ Rennes, CNRS, IRMAR – UMR 6625, 35000 Rennes, France et Institut Universitaire de FranceLehrstuhl für Mathematik I, Universität Bayreuth, 95440 Bayreuth, GermanyInstitut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, FranceLet $(X, \Delta )$ be a compact Kähler klt pair, where $K_X + \Delta $ is ample or numerically trivial, and $\Delta $ has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for $(X, \Delta )$, then its orbifold universal cover is either the unit ball (ample case) or the affine space (numerically trivial case).https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/Miyaoka–Yau inequalityorbifold uniformizationklt pairs |
spellingShingle | Claudon, Benoît Graf, Patrick Guenancia, Henri Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs Comptes Rendus. Mathématique Miyaoka–Yau inequality orbifold uniformization klt pairs |
title | Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs |
title_full | Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs |
title_fullStr | Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs |
title_full_unstemmed | Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs |
title_short | Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs |
title_sort | equality in the miyaoka yau inequality and uniformization of non positively curved klt pairs |
topic | Miyaoka–Yau inequality orbifold uniformization klt pairs |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/ |
work_keys_str_mv | AT claudonbenoit equalityinthemiyaokayauinequalityanduniformizationofnonpositivelycurvedkltpairs AT grafpatrick equalityinthemiyaokayauinequalityanduniformizationofnonpositivelycurvedkltpairs AT guenanciahenri equalityinthemiyaokayauinequalityanduniformizationofnonpositivelycurvedkltpairs |