On the generalised André–Pink–Zannier conjecture.

We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the “wea...

Full description

Saved in:
Bibliographic Details
Main Authors: Richard, Rodolphe, Yafaev, Andrei
Format: Article
Language:English
Published: Académie des sciences 2023-12-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.491/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206248688058368
author Richard, Rodolphe
Yafaev, Andrei
author_facet Richard, Rodolphe
Yafaev, Andrei
author_sort Richard, Rodolphe
collection DOAJ
description We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the “weakly adelic Mumford–Tate hypothesis” and prove the generalised André–Pink–Zannier conjecture (a special case of the Zilber-Pink conjecture) under this assumption using the Pila–Zannier strategy.
format Article
id doaj-art-932991546e9548f297a5eb9e286886ee
institution Kabale University
issn 1778-3569
language English
publishDate 2023-12-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-932991546e9548f297a5eb9e286886ee2025-02-07T11:12:14ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-12-01361G111717172210.5802/crmath.49110.5802/crmath.491On the generalised André–Pink–Zannier conjecture.Richard, Rodolphe0Yafaev, Andrei1UCL Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UKUCL Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UKWe introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the “weakly adelic Mumford–Tate hypothesis” and prove the generalised André–Pink–Zannier conjecture (a special case of the Zilber-Pink conjecture) under this assumption using the Pila–Zannier strategy.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.491/Shimura varietiesHecke orbitsZilber-PinkHeightsSiegel setsMumford–Tate conjectureAdelic linear groups
spellingShingle Richard, Rodolphe
Yafaev, Andrei
On the generalised André–Pink–Zannier conjecture.
Comptes Rendus. Mathématique
Shimura varieties
Hecke orbits
Zilber-Pink
Heights
Siegel sets
Mumford–Tate conjecture
Adelic linear groups
title On the generalised André–Pink–Zannier conjecture.
title_full On the generalised André–Pink–Zannier conjecture.
title_fullStr On the generalised André–Pink–Zannier conjecture.
title_full_unstemmed On the generalised André–Pink–Zannier conjecture.
title_short On the generalised André–Pink–Zannier conjecture.
title_sort on the generalised andre pink zannier conjecture
topic Shimura varieties
Hecke orbits
Zilber-Pink
Heights
Siegel sets
Mumford–Tate conjecture
Adelic linear groups
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.491/
work_keys_str_mv AT richardrodolphe onthegeneralisedandrepinkzannierconjecture
AT yafaevandrei onthegeneralisedandrepinkzannierconjecture