Fundamental groups of proper varieties are finitely presented

It was proven in [1], that the étale fundamental group of a connected smooth projective variety over an algebraically closed field $k$ is topologically finitely presented. In this note, we extend this result to all connected proper schemes over $k$.

Saved in:
Bibliographic Details
Main Authors: Lara, Marcin, Srinivas, Vasudevan, Stix, Jakob
Format: Article
Language:English
Published: Académie des sciences 2024-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.518/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206249471344640
author Lara, Marcin
Srinivas, Vasudevan
Stix, Jakob
author_facet Lara, Marcin
Srinivas, Vasudevan
Stix, Jakob
author_sort Lara, Marcin
collection DOAJ
description It was proven in [1], that the étale fundamental group of a connected smooth projective variety over an algebraically closed field $k$ is topologically finitely presented. In this note, we extend this result to all connected proper schemes over $k$.
format Article
id doaj-art-940a231f8d2442f78ec378daf912f08e
institution Kabale University
issn 1778-3569
language English
publishDate 2024-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-940a231f8d2442f78ec378daf912f08e2025-02-07T11:12:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-02-01362G1515410.5802/crmath.51810.5802/crmath.518Fundamental groups of proper varieties are finitely presentedLara, Marcin0https://orcid.org/0000-0002-6766-6996Srinivas, Vasudevan1Stix, Jakob2Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, PolandTIFR, School of Mathematics, Homi Bhabha Road, Colaba, 400005 Mumbai, IndiaInstitut für Mathematik, Goethe–Universität Frankfurt, Robert-Mayer-Straße 6–8, 60325 Frankfurt am Main, GermanyIt was proven in [1], that the étale fundamental group of a connected smooth projective variety over an algebraically closed field $k$ is topologically finitely presented. In this note, we extend this result to all connected proper schemes over $k$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.518/
spellingShingle Lara, Marcin
Srinivas, Vasudevan
Stix, Jakob
Fundamental groups of proper varieties are finitely presented
Comptes Rendus. Mathématique
title Fundamental groups of proper varieties are finitely presented
title_full Fundamental groups of proper varieties are finitely presented
title_fullStr Fundamental groups of proper varieties are finitely presented
title_full_unstemmed Fundamental groups of proper varieties are finitely presented
title_short Fundamental groups of proper varieties are finitely presented
title_sort fundamental groups of proper varieties are finitely presented
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.518/
work_keys_str_mv AT laramarcin fundamentalgroupsofpropervarietiesarefinitelypresented
AT srinivasvasudevan fundamentalgroupsofpropervarietiesarefinitelypresented
AT stixjakob fundamentalgroupsofpropervarietiesarefinitelypresented