Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung

Penyakit jantung iskemik adalah salah satu jenis penyakit kardiovaskular dengan jumlah penderita yang besar dan menjadi penyebab utama kematian di dunia. Disamping itu, penyakit jantung juga menyebabkan kerugian ekonomi. Diagnosis penyakit jantung pada tahap awal dapat membantu mengurangi risiko ke...

Full description

Saved in:
Bibliographic Details
Main Authors: Nafa Fajriati, Budi Prasetiyo
Format: Article
Language:Indonesian
Published: University of Brawijaya 2023-07-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/6510
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858636656476160
author Nafa Fajriati
Budi Prasetiyo
author_facet Nafa Fajriati
Budi Prasetiyo
author_sort Nafa Fajriati
collection DOAJ
description Penyakit jantung iskemik adalah salah satu jenis penyakit kardiovaskular dengan jumlah penderita yang besar dan menjadi penyebab utama kematian di dunia. Disamping itu, penyakit jantung juga menyebabkan kerugian ekonomi. Diagnosis penyakit jantung pada tahap awal dapat membantu mengurangi risiko kematian dan tingginya biaya perawatan akibat penyakit jantung. Diagnosis penyakit merupakan proses penting yang harus dilakukan secara akurat agar tidak terjadi kesalahan diagnosis. Data mining dapat diterapkan untuk meningkatkan akurasi dan mengurangi jumlah kesalahan diagnosis. Salah satu teknik data mining adalah klasifikasi. Naïve Bayes merupakan algoritma klasifikasi yang memiliki kemampuan yang cukup baik untuk membangun model pengklasifikasi. Pada penelitian ini, dilakukan klasifikasi penyakit jantung menggunakan algoritma Naïve Bayes. Dataset yang digunakan yaitu Cleveland heart disease dataset dari UCI Machine Learning Repository. Untuk meningkatkan akurasi klasifikasi menggunakan algoritma Naive Bayes, atribut kontinu pada dataset diubah menjadi atribut diskrit dengan diskritisasi K-means. Diskritisasi K-means mengubah nilai setiap atribut kontinu menjadi kategori-kategori diskrit berupa cluster sejumlah k yang terbentuk dari proses algoritma K-means. Hal tersebut dilakukan karena algoritma Naïve Bayes menunjukkan kemampuan klasifikasi yang lebih baik apabila menggunakan data masukan berupa diskrit dibanding kontinu. Hasil akurasi yang diperoleh dari algoritma Naïve Bayes tanpa menerapkan diskritisasi K-means pada Cleveland heart disease dataset adalah 86,89%, sedangkan hasil akurasi yang diperoleh dari algoritma Naïve Bayes dengan menerapkan diskritisasi K-means pada Cleveland heart disease dataset adalah 88,52%. Berdasarkan perbandingan akurasi yang dihasilkan, dapat diketahui adanya peningkatan akurasi sebesar 1,63%. Hal tersebut menunjukkan bahwa diskritisasi K-means berperan dalam mengoptimalkan kinerja algoritma Naïve Bayes sehingga menghasilkan akurasi yang lebih baik.   Abstract   Ischemic heart disease is a type of cardiovascular disease with a large number of sufferers and is the leading cause of death in the world. In addition, heart disease also causes economic losses. Diagnosing heart disease early can help reduce the risk of death and the high costs of treatment for heart disease. Diagnosis of the disease is an important process that must be carried out accurately to avoid misdiagnosis. Data mining can be applied to improve accuracy and reduce the number of misdiagnoses. One of the data mining techniques is classification. Naïve Bayes is a classification algorithm that has a fairly good ability to build a classifier model. In this study, heart disease was classified using the Naïve Bayes algorithm. The dataset used is the Cleveland heart disease dataset from the UCI Machine Learning Repository. To improve classification accuracy using the Naive Bayes algorithm, continuous attributes in the dataset are changed to discrete attributes using K-means discretization. K-means discretization changes the value of each continuous attribute into discrete categories in the form of k clusters formed from the K-means algorithm process. This is done because the Naïve Bayes algorithm shows a better classification ability when it uses discrete rather than continuous input data. The accuracy results obtained from the Naïve Bayes algorithm without applying the K-means discretization to the Cleveland heart disease dataset are 86.89%, while the accuracy results obtained from the Nave Bayes algorithm by applying the K-means discretization to the Cleveland heart disease dataset are 88.52%. . Based on the comparison of the resulting accuracy, it can be seen that there is an increase in accuracy of 1.63%. This shows that K-means discretization plays a role in optimizing the performance of the Naïve Bayes algorithm to produce better accuracy.
format Article
id doaj-art-96120fd9ff674587bc70fd33453c52b9
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2023-07-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-96120fd9ff674587bc70fd33453c52b92025-02-11T10:39:17ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792023-07-0110310.25126/jtiik.202310365101132Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit JantungNafa Fajriati0Budi Prasetiyo1Universitas Negeri Semarang, SemarangUniversitas Negeri Semarang, Semarang Penyakit jantung iskemik adalah salah satu jenis penyakit kardiovaskular dengan jumlah penderita yang besar dan menjadi penyebab utama kematian di dunia. Disamping itu, penyakit jantung juga menyebabkan kerugian ekonomi. Diagnosis penyakit jantung pada tahap awal dapat membantu mengurangi risiko kematian dan tingginya biaya perawatan akibat penyakit jantung. Diagnosis penyakit merupakan proses penting yang harus dilakukan secara akurat agar tidak terjadi kesalahan diagnosis. Data mining dapat diterapkan untuk meningkatkan akurasi dan mengurangi jumlah kesalahan diagnosis. Salah satu teknik data mining adalah klasifikasi. Naïve Bayes merupakan algoritma klasifikasi yang memiliki kemampuan yang cukup baik untuk membangun model pengklasifikasi. Pada penelitian ini, dilakukan klasifikasi penyakit jantung menggunakan algoritma Naïve Bayes. Dataset yang digunakan yaitu Cleveland heart disease dataset dari UCI Machine Learning Repository. Untuk meningkatkan akurasi klasifikasi menggunakan algoritma Naive Bayes, atribut kontinu pada dataset diubah menjadi atribut diskrit dengan diskritisasi K-means. Diskritisasi K-means mengubah nilai setiap atribut kontinu menjadi kategori-kategori diskrit berupa cluster sejumlah k yang terbentuk dari proses algoritma K-means. Hal tersebut dilakukan karena algoritma Naïve Bayes menunjukkan kemampuan klasifikasi yang lebih baik apabila menggunakan data masukan berupa diskrit dibanding kontinu. Hasil akurasi yang diperoleh dari algoritma Naïve Bayes tanpa menerapkan diskritisasi K-means pada Cleveland heart disease dataset adalah 86,89%, sedangkan hasil akurasi yang diperoleh dari algoritma Naïve Bayes dengan menerapkan diskritisasi K-means pada Cleveland heart disease dataset adalah 88,52%. Berdasarkan perbandingan akurasi yang dihasilkan, dapat diketahui adanya peningkatan akurasi sebesar 1,63%. Hal tersebut menunjukkan bahwa diskritisasi K-means berperan dalam mengoptimalkan kinerja algoritma Naïve Bayes sehingga menghasilkan akurasi yang lebih baik.   Abstract   Ischemic heart disease is a type of cardiovascular disease with a large number of sufferers and is the leading cause of death in the world. In addition, heart disease also causes economic losses. Diagnosing heart disease early can help reduce the risk of death and the high costs of treatment for heart disease. Diagnosis of the disease is an important process that must be carried out accurately to avoid misdiagnosis. Data mining can be applied to improve accuracy and reduce the number of misdiagnoses. One of the data mining techniques is classification. Naïve Bayes is a classification algorithm that has a fairly good ability to build a classifier model. In this study, heart disease was classified using the Naïve Bayes algorithm. The dataset used is the Cleveland heart disease dataset from the UCI Machine Learning Repository. To improve classification accuracy using the Naive Bayes algorithm, continuous attributes in the dataset are changed to discrete attributes using K-means discretization. K-means discretization changes the value of each continuous attribute into discrete categories in the form of k clusters formed from the K-means algorithm process. This is done because the Naïve Bayes algorithm shows a better classification ability when it uses discrete rather than continuous input data. The accuracy results obtained from the Naïve Bayes algorithm without applying the K-means discretization to the Cleveland heart disease dataset are 86.89%, while the accuracy results obtained from the Nave Bayes algorithm by applying the K-means discretization to the Cleveland heart disease dataset are 88.52%. . Based on the comparison of the resulting accuracy, it can be seen that there is an increase in accuracy of 1.63%. This shows that K-means discretization plays a role in optimizing the performance of the Naïve Bayes algorithm to produce better accuracy. https://jtiik.ub.ac.id/index.php/jtiik/article/view/6510
spellingShingle Nafa Fajriati
Budi Prasetiyo
Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung
Jurnal Teknologi Informasi dan Ilmu Komputer
title Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung
title_full Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung
title_fullStr Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung
title_full_unstemmed Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung
title_short Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung
title_sort optimasi algoritma naive bayes dengan diskritisasi k means pada diagnosis penyakit jantung
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/6510
work_keys_str_mv AT nafafajriati optimasialgoritmanaivebayesdengandiskritisasikmeanspadadiagnosispenyakitjantung
AT budiprasetiyo optimasialgoritmanaivebayesdengandiskritisasikmeanspadadiagnosispenyakitjantung