Étude des $(n+1)$-tissus de courbes en dimension $n$

For $(n+1)$-webs by curves in an ambiant $n$-dimensional manifold, we first define a generalization of the well known Blaschke curvature of the dimension two, which vanishes iff the web has the maximum possible rank which is one. But, contrary to the dimension two where all 3-webs of rank one are lo...

Full description

Saved in:
Bibliographic Details
Main Authors: Dufour, Jean-Paul, Lehmann, Daniel
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.500/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206250275602432
author Dufour, Jean-Paul
Lehmann, Daniel
author_facet Dufour, Jean-Paul
Lehmann, Daniel
author_sort Dufour, Jean-Paul
collection DOAJ
description For $(n+1)$-webs by curves in an ambiant $n$-dimensional manifold, we first define a generalization of the well known Blaschke curvature of the dimension two, which vanishes iff the web has the maximum possible rank which is one. But, contrary to the dimension two where all 3-webs of rank one are locally isomorphic, we prove that there are infinitely many classes of isomorphism for germs of 4-webs by curves of rank one in the dimension three: we provide a procedure for building all of them, and give examples of invariants of these classes allowing in particular to distinguish the so-called quadrilateral webs among them.
format Article
id doaj-art-977b038a138d4080950db63aa492c03c
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-977b038a138d4080950db63aa492c03c2025-02-07T11:10:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91491149710.5802/crmath.50010.5802/crmath.500Étude des $(n+1)$-tissus de courbes en dimension $n$Dufour, Jean-Paul0Lehmann, Daniel11 rue du Portalet 34820 Teyran, France; ancien professeur à l’Université de Montpellier II4 rue Becagrun 30980 Saint Dionisy, France; ancien professeur à l’Université de Montpellier IIFor $(n+1)$-webs by curves in an ambiant $n$-dimensional manifold, we first define a generalization of the well known Blaschke curvature of the dimension two, which vanishes iff the web has the maximum possible rank which is one. But, contrary to the dimension two where all 3-webs of rank one are locally isomorphic, we prove that there are infinitely many classes of isomorphism for germs of 4-webs by curves of rank one in the dimension three: we provide a procedure for building all of them, and give examples of invariants of these classes allowing in particular to distinguish the so-called quadrilateral webs among them.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.500/tissus en courbescourburerang
spellingShingle Dufour, Jean-Paul
Lehmann, Daniel
Étude des $(n+1)$-tissus de courbes en dimension $n$
Comptes Rendus. Mathématique
tissus en courbes
courbure
rang
title Étude des $(n+1)$-tissus de courbes en dimension $n$
title_full Étude des $(n+1)$-tissus de courbes en dimension $n$
title_fullStr Étude des $(n+1)$-tissus de courbes en dimension $n$
title_full_unstemmed Étude des $(n+1)$-tissus de courbes en dimension $n$
title_short Étude des $(n+1)$-tissus de courbes en dimension $n$
title_sort etude des n 1 tissus de courbes en dimension n
topic tissus en courbes
courbure
rang
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.500/
work_keys_str_mv AT dufourjeanpaul etudedesn1tissusdecourbesendimensionn
AT lehmanndaniel etudedesn1tissusdecourbesendimensionn