Finiteness of rank for Grassmann convexity
The Grassmann convexity conjecture, formulated in [8], gives a conjectural formula for the maximal total number of real zeroes of the consecutive Wronskians of an arbitrary fundamental solution to a disconjugate linear ordinary differential equation with real time. The conjecture can be reformulated...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-02-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.343/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Grassmann convexity conjecture, formulated in [8], gives a conjectural formula for the maximal total number of real zeroes of the consecutive Wronskians of an arbitrary fundamental solution to a disconjugate linear ordinary differential equation with real time. The conjecture can be reformulated in terms of convex curves in the nilpotent lower triangular group. The formula has already been shown to be a correct lower bound and to give a correct upper bound in several small dimensional cases. In this paper we obtain a general explicit upper bound. |
---|---|
ISSN: | 1778-3569 |