Dirichlet type extensions of Euler sums

In this paper, we study the alternating Euler $T$-sums and $\tilde{S}$-sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit form...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Ce, Wang, Weiping
Format: Article
Language:English
Published: Académie des sciences 2023-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.453/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the alternating Euler $T$-sums and $\tilde{S}$-sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit formulas for the (alternating) linear and quadratic Euler $T$-sums and $\tilde{S}$-sums, from which, the parity theorems of Hoffman’s double and triple $t$-values and Kaneko–Tsumura’s double and triple $T$-values are further obtained. As supplements, we also show that the linear $T$-sums and $\tilde{S}$-sums are expressible in terms of colored multiple zeta values. Some interesting consequences and illustrative examples are presented.
ISSN:1778-3569