Dirichlet type extensions of Euler sums

In this paper, we study the alternating Euler $T$-sums and $\tilde{S}$-sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit form...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Ce, Wang, Weiping
Format: Article
Language:English
Published: Académie des sciences 2023-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.453/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206251499290624
author Xu, Ce
Wang, Weiping
author_facet Xu, Ce
Wang, Weiping
author_sort Xu, Ce
collection DOAJ
description In this paper, we study the alternating Euler $T$-sums and $\tilde{S}$-sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit formulas for the (alternating) linear and quadratic Euler $T$-sums and $\tilde{S}$-sums, from which, the parity theorems of Hoffman’s double and triple $t$-values and Kaneko–Tsumura’s double and triple $T$-values are further obtained. As supplements, we also show that the linear $T$-sums and $\tilde{S}$-sums are expressible in terms of colored multiple zeta values. Some interesting consequences and illustrative examples are presented.
format Article
id doaj-art-99b16ab83b2c4ee58533f05c56bba5eb
institution Kabale University
issn 1778-3569
language English
publishDate 2023-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-99b16ab83b2c4ee58533f05c56bba5eb2025-02-07T11:09:17ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-09-01361G6979101010.5802/crmath.45310.5802/crmath.453Dirichlet type extensions of Euler sumsXu, Ce0Wang, Weiping1School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, P.R. ChinaSchool of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. ChinaIn this paper, we study the alternating Euler $T$-sums and $\tilde{S}$-sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit formulas for the (alternating) linear and quadratic Euler $T$-sums and $\tilde{S}$-sums, from which, the parity theorems of Hoffman’s double and triple $t$-values and Kaneko–Tsumura’s double and triple $T$-values are further obtained. As supplements, we also show that the linear $T$-sums and $\tilde{S}$-sums are expressible in terms of colored multiple zeta values. Some interesting consequences and illustrative examples are presented.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.453/
spellingShingle Xu, Ce
Wang, Weiping
Dirichlet type extensions of Euler sums
Comptes Rendus. Mathématique
title Dirichlet type extensions of Euler sums
title_full Dirichlet type extensions of Euler sums
title_fullStr Dirichlet type extensions of Euler sums
title_full_unstemmed Dirichlet type extensions of Euler sums
title_short Dirichlet type extensions of Euler sums
title_sort dirichlet type extensions of euler sums
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.453/
work_keys_str_mv AT xuce dirichlettypeextensionsofeulersums
AT wangweiping dirichlettypeextensionsofeulersums