Frobenius integrability of certain $p$-forms on singular spaces

Demailly proved that on a smooth compact Kähler manifold the distribution defined by a holomorphic $p$-form with values in an anti-pseudoeffective line bundle is always integrable. We generalise his result to compact Kähler spaces with klt singularities.

Saved in:
Bibliographic Details
Main Authors: Cao, Junyan, Höring, Andreas
Format: Article
Language:English
Published: Académie des sciences 2024-06-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.582/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Demailly proved that on a smooth compact Kähler manifold the distribution defined by a holomorphic $p$-form with values in an anti-pseudoeffective line bundle is always integrable. We generalise his result to compact Kähler spaces with klt singularities.
ISSN:1778-3569