Nonperturbative correlation functions from homotopy algebras
Abstract The formula for correlation functions based on quantum A ∞ algebras in arXiv:2203.05366, arXiv:2305.11634, and arXiv:2305.13103 requires us to divide the action into the free part and the interaction part. We present a new form of the formula which does not involve such division. The new fo...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2025-01-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP01(2025)152 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823863476283506688 |
---|---|
author | Keisuke Konosu Yuji Okawa |
author_facet | Keisuke Konosu Yuji Okawa |
author_sort | Keisuke Konosu |
collection | DOAJ |
description | Abstract The formula for correlation functions based on quantum A ∞ algebras in arXiv:2203.05366, arXiv:2305.11634, and arXiv:2305.13103 requires us to divide the action into the free part and the interaction part. We present a new form of the formula which does not involve such division. The new formula requires us to choose a solution to the equations of motion which does not have to be real, and we claim that the formula gives correlation functions evaluated on the Lefschetz thimble associated with the solution we chose. Our formula correctly reproduces correlation functions in perturbation theory, but it can be valid nonperturbatively, and we present numerical evidence for scalar field theories in zero dimensions both in the Euclidean case and the Lorentzian case that correlation functions for finite coupling constants can be reproduced. When the theory consists of a single Lefschetz thimble, our formula gives correlation functions of the theory by choosing the solution corresponding to the thimble. When the theory consists of multiple Lefschetz thimbles, we need to evaluate the ratios of the partition functions for those thimbles and we describe a method of such evaluations based on quantum A ∞ algebras in a forthcoming paper. |
format | Article |
id | doaj-art-9ab129e877a24780898958fd64c84607 |
institution | Kabale University |
issn | 1029-8479 |
language | English |
publishDate | 2025-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj-art-9ab129e877a24780898958fd64c846072025-02-09T12:07:31ZengSpringerOpenJournal of High Energy Physics1029-84792025-01-012025114110.1007/JHEP01(2025)152Nonperturbative correlation functions from homotopy algebrasKeisuke Konosu0Yuji Okawa1Graduate School of Arts and Sciences, The University of TokyoGraduate School of Arts and Sciences, The University of TokyoAbstract The formula for correlation functions based on quantum A ∞ algebras in arXiv:2203.05366, arXiv:2305.11634, and arXiv:2305.13103 requires us to divide the action into the free part and the interaction part. We present a new form of the formula which does not involve such division. The new formula requires us to choose a solution to the equations of motion which does not have to be real, and we claim that the formula gives correlation functions evaluated on the Lefschetz thimble associated with the solution we chose. Our formula correctly reproduces correlation functions in perturbation theory, but it can be valid nonperturbatively, and we present numerical evidence for scalar field theories in zero dimensions both in the Euclidean case and the Lorentzian case that correlation functions for finite coupling constants can be reproduced. When the theory consists of a single Lefschetz thimble, our formula gives correlation functions of the theory by choosing the solution corresponding to the thimble. When the theory consists of multiple Lefschetz thimbles, we need to evaluate the ratios of the partition functions for those thimbles and we describe a method of such evaluations based on quantum A ∞ algebras in a forthcoming paper.https://doi.org/10.1007/JHEP01(2025)152String Field TheoryNonperturbative Effects |
spellingShingle | Keisuke Konosu Yuji Okawa Nonperturbative correlation functions from homotopy algebras Journal of High Energy Physics String Field Theory Nonperturbative Effects |
title | Nonperturbative correlation functions from homotopy algebras |
title_full | Nonperturbative correlation functions from homotopy algebras |
title_fullStr | Nonperturbative correlation functions from homotopy algebras |
title_full_unstemmed | Nonperturbative correlation functions from homotopy algebras |
title_short | Nonperturbative correlation functions from homotopy algebras |
title_sort | nonperturbative correlation functions from homotopy algebras |
topic | String Field Theory Nonperturbative Effects |
url | https://doi.org/10.1007/JHEP01(2025)152 |
work_keys_str_mv | AT keisukekonosu nonperturbativecorrelationfunctionsfromhomotopyalgebras AT yujiokawa nonperturbativecorrelationfunctionsfromhomotopyalgebras |