Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption

Chitosan (CS) hydrogel beads and hybrid beads made of a blending of CS hydrogels and Multilayer Graphene Oxide (MGO) were synthesized. The hybrid beads were prepared by gelation in NaOH solution of a 1 wt% CS acid solution with addition of MGO at either 1.5 wt% or 3 wt% loading rates. Prepared beads...

Full description

Saved in:
Bibliographic Details
Main Authors: Bouyahmed, Farida, Muller, Fabrice, Richard, Annie, Mostefaoui, Toufik Amayas, Belabbas, Imad, Warmont, Fabienne, Roulet, Marjorie, Reinert, Laurence, Duclaux, Laurent, Delpeux-Ouldriane, Sandrine
Format: Article
Language:English
Published: Académie des sciences 2022-09-01
Series:Comptes Rendus. Chimie
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.183/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206170937196544
author Bouyahmed, Farida
Muller, Fabrice
Richard, Annie
Mostefaoui, Toufik Amayas
Belabbas, Imad
Warmont, Fabienne
Roulet, Marjorie
Reinert, Laurence
Duclaux, Laurent
Delpeux-Ouldriane, Sandrine
author_facet Bouyahmed, Farida
Muller, Fabrice
Richard, Annie
Mostefaoui, Toufik Amayas
Belabbas, Imad
Warmont, Fabienne
Roulet, Marjorie
Reinert, Laurence
Duclaux, Laurent
Delpeux-Ouldriane, Sandrine
author_sort Bouyahmed, Farida
collection DOAJ
description Chitosan (CS) hydrogel beads and hybrid beads made of a blending of CS hydrogels and Multilayer Graphene Oxide (MGO) were synthesized. The hybrid beads were prepared by gelation in NaOH solution of a 1 wt% CS acid solution with addition of MGO at either 1.5 wt% or 3 wt% loading rates. Prepared beads were characterized by infrared spectroscopy, thermogravimetric analysis (TGA), scanning electron cryo-microscopy and Brunauer–Emmett–Teller (BET) specific surface area measurements. $\text{Zn}^{2+}$ and Metoprolol (MTP) adsorption kinetics and isotherms were studied on the pristine and hybrid CS hydrogel beads. The adsorption kinetics of $\text{Zn}^{2+}$ and MTP in hybrid beads is limited by the diffusion to the MGO sites depending on their accessibility. While pure CS is not efficient for the MTP adsorption, the Langmuir-type isotherms of the 3 wt% MGO hydrogel beads (dose: 5 mg/100 mL) show 163 mg$\cdot $g$^{-1}$ maximum adsorption uptake. The MTP adsorption kinetics and isotherm suggest a MTP trapping on the MGO anionic sites (carboxylate groups) by electrostatic interactions. The $\text{Zn}^{2+}$ adsorption capacities are the highest for the 3 wt% MGO hydrogel beads (236 mg$\cdot $g$^{-1}$), and only of 40 mg$\cdot $g$^{-1}$ for the pure CS beads. The presence of $\text{Zn}^{2+}$ adsorption sites in the hybrid bead, such as MGO carboxylate groups giving electrostatic interactions, and CS amine groups leading to complexation, provides synergic adsorption effects. The competitive adsorption of $\text{Zn}^{2+}$ with respect to MTP in equimolar mixture was observed on hybrid beads (dose: 200 mg/100 mL) at 2 mmol$\cdot $L$^{-1}$ initial total concentration. At pollutant initial total concentration lower than 1.5 mmol$\cdot $L$^{-1}$, no competition occurs. The regeneration at pH 4 of the hybrid beads toward MTP or $\text{Zn}^{2+}$ adsorption was found to be 35–40% of the initial adsorption uptake for five adsorption/regeneration cycles.
format Article
id doaj-art-9bfad61893bf4e699a448071ec8b4f2a
institution Kabale University
issn 1878-1543
language English
publishDate 2022-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Chimie
spelling doaj-art-9bfad61893bf4e699a448071ec8b4f2a2025-02-07T13:31:13ZengAcadémie des sciencesComptes Rendus. Chimie1878-15432022-09-0125G120522310.5802/crchim.18310.5802/crchim.183Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorptionBouyahmed, Farida0https://orcid.org/0000-0002-3331-0203Muller, Fabrice1https://orcid.org/0000-0003-0887-651XRichard, Annie2Mostefaoui, Toufik Amayas3https://orcid.org/0000-0001-8149-9306Belabbas, Imad4https://orcid.org/0000-0001-9200-0339Warmont, Fabienne5https://orcid.org/0000-0002-5402-4003Roulet, Marjorie6https://orcid.org/0000-0003-1510-5537Reinert, Laurence7https://orcid.org/0000-0002-4417-9116Duclaux, Laurent8https://orcid.org/0000-0002-5532-1456Delpeux-Ouldriane, Sandrine9https://orcid.org/0000-0003-3899-9959CNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, France; Laboratoire de Physico-Chimie des Matériaux et Catalyse, Département de chimie, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, AlgérieCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, France; ISTO, Université d’Orléans, 45071 Orléans, FranceCME, Université d’Orléans, 45100 Orléans, FranceLaboratoire de Physico-Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, Algérie; Thunder Optics, 34060, Montpellier, FranceLaboratoire de Physico-Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, AlgérieCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, FranceCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, FranceUniversité Savoie Mont Blanc, EDYTEM, 73000 Chambéry, FranceUniversité Savoie Mont Blanc, EDYTEM, 73000 Chambéry, FranceCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, FranceChitosan (CS) hydrogel beads and hybrid beads made of a blending of CS hydrogels and Multilayer Graphene Oxide (MGO) were synthesized. The hybrid beads were prepared by gelation in NaOH solution of a 1 wt% CS acid solution with addition of MGO at either 1.5 wt% or 3 wt% loading rates. Prepared beads were characterized by infrared spectroscopy, thermogravimetric analysis (TGA), scanning electron cryo-microscopy and Brunauer–Emmett–Teller (BET) specific surface area measurements. $\text{Zn}^{2+}$ and Metoprolol (MTP) adsorption kinetics and isotherms were studied on the pristine and hybrid CS hydrogel beads. The adsorption kinetics of $\text{Zn}^{2+}$ and MTP in hybrid beads is limited by the diffusion to the MGO sites depending on their accessibility. While pure CS is not efficient for the MTP adsorption, the Langmuir-type isotherms of the 3 wt% MGO hydrogel beads (dose: 5 mg/100 mL) show 163 mg$\cdot $g$^{-1}$ maximum adsorption uptake. The MTP adsorption kinetics and isotherm suggest a MTP trapping on the MGO anionic sites (carboxylate groups) by electrostatic interactions. The $\text{Zn}^{2+}$ adsorption capacities are the highest for the 3 wt% MGO hydrogel beads (236 mg$\cdot $g$^{-1}$), and only of 40 mg$\cdot $g$^{-1}$ for the pure CS beads. The presence of $\text{Zn}^{2+}$ adsorption sites in the hybrid bead, such as MGO carboxylate groups giving electrostatic interactions, and CS amine groups leading to complexation, provides synergic adsorption effects. The competitive adsorption of $\text{Zn}^{2+}$ with respect to MTP in equimolar mixture was observed on hybrid beads (dose: 200 mg/100 mL) at 2 mmol$\cdot $L$^{-1}$ initial total concentration. At pollutant initial total concentration lower than 1.5 mmol$\cdot $L$^{-1}$, no competition occurs. The regeneration at pH 4 of the hybrid beads toward MTP or $\text{Zn}^{2+}$ adsorption was found to be 35–40% of the initial adsorption uptake for five adsorption/regeneration cycles.https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.183/ChitosanMultilayer graphene oxideWater treatment$\text{Zn}^{2+}$Metoprolol
spellingShingle Bouyahmed, Farida
Muller, Fabrice
Richard, Annie
Mostefaoui, Toufik Amayas
Belabbas, Imad
Warmont, Fabienne
Roulet, Marjorie
Reinert, Laurence
Duclaux, Laurent
Delpeux-Ouldriane, Sandrine
Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption
Comptes Rendus. Chimie
Chitosan
Multilayer graphene oxide
Water treatment
$\text{Zn}^{2+}$
Metoprolol
title Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption
title_full Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption
title_fullStr Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption
title_full_unstemmed Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption
title_short Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption
title_sort chitosan multilayered graphene oxide hybrid beads for protect text zn 2 and metoprolol adsorption
topic Chitosan
Multilayer graphene oxide
Water treatment
$\text{Zn}^{2+}$
Metoprolol
url https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.183/
work_keys_str_mv AT bouyahmedfarida chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT mullerfabrice chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT richardannie chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT mostefaouitoufikamayas chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT belabbasimad chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT warmontfabienne chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT rouletmarjorie chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT reinertlaurence chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT duclauxlaurent chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption
AT delpeuxouldrianesandrine chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption