On a problem of Nathanson related to minimal asymptotic bases of order $h$

For integer $h\ge 2$ and $A\subseteq \mathbb{N}$, we define $hA$ to be the set of all integers which can be written as a sum of $h$, not necessarily distinct, elements of $A$. The set $A$ is called an asymptotic basis of order $h$ if $n\in hA$ for all sufficiently large integers $n$. An asymptotic b...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Shi-Qiang, Sándor, Csaba, Yang, Quan-Hui
Format: Article
Language:English
Published: Académie des sciences 2024-02-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.530/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206252860342272
author Chen, Shi-Qiang
Sándor, Csaba
Yang, Quan-Hui
author_facet Chen, Shi-Qiang
Sándor, Csaba
Yang, Quan-Hui
author_sort Chen, Shi-Qiang
collection DOAJ
description For integer $h\ge 2$ and $A\subseteq \mathbb{N}$, we define $hA$ to be the set of all integers which can be written as a sum of $h$, not necessarily distinct, elements of $A$. The set $A$ is called an asymptotic basis of order $h$ if $n\in hA$ for all sufficiently large integers $n$. An asymptotic basis $A$ of order $h$ is minimal if no proper subset of $A$ is an asymptotic basis of order $h$. For $W\subseteq \mathbb{N}$, denote by $\mathcal{F}^*(W)$ the set of all finite, nonempty subsets of $W$. Let $A(W)$ be the set of all numbers of the form $\sum _{f \in F} 2^f$, where $F \in \mathcal{F}^*(W)$. In this paper, we give some characterizations of the partitions $\mathbb{N}=W_1\cup \dots \cup W_h$ with the property that $A=A(W_1)\cup \dots \cup A(W_{h})$ is a minimal asymptotic basis of order $h$. This generalizes a result of Chen and Chen, recent result of Ling and Tang, and also recent result of Sun.
format Article
id doaj-art-9c93450d06a14de7b3e6b871169e00d9
institution Kabale University
issn 1778-3569
language English
publishDate 2024-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-9c93450d06a14de7b3e6b871169e00d92025-02-07T11:12:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-02-01362G1717610.5802/crmath.53010.5802/crmath.530On a problem of Nathanson related to minimal asymptotic bases of order $h$Chen, Shi-Qiang0Sándor, Csaba1Yang, Quan-Hui2School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, P. R. ChinaDepartment of Computer Science and Information Theory, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; Department of Stochastics, Institute of Mathematics, BudapestUniversity of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; MTA-BME Lendület Arithmetic Combinatorics Research Group, ELKH, Műegyetem rkp. 3., H-1111 Budapest, HungarySchool of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaFor integer $h\ge 2$ and $A\subseteq \mathbb{N}$, we define $hA$ to be the set of all integers which can be written as a sum of $h$, not necessarily distinct, elements of $A$. The set $A$ is called an asymptotic basis of order $h$ if $n\in hA$ for all sufficiently large integers $n$. An asymptotic basis $A$ of order $h$ is minimal if no proper subset of $A$ is an asymptotic basis of order $h$. For $W\subseteq \mathbb{N}$, denote by $\mathcal{F}^*(W)$ the set of all finite, nonempty subsets of $W$. Let $A(W)$ be the set of all numbers of the form $\sum _{f \in F} 2^f$, where $F \in \mathcal{F}^*(W)$. In this paper, we give some characterizations of the partitions $\mathbb{N}=W_1\cup \dots \cup W_h$ with the property that $A=A(W_1)\cup \dots \cup A(W_{h})$ is a minimal asymptotic basis of order $h$. This generalizes a result of Chen and Chen, recent result of Ling and Tang, and also recent result of Sun.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.530/Asymptotic basesminimal asymptotic basesbinary representation
spellingShingle Chen, Shi-Qiang
Sándor, Csaba
Yang, Quan-Hui
On a problem of Nathanson related to minimal asymptotic bases of order $h$
Comptes Rendus. Mathématique
Asymptotic bases
minimal asymptotic bases
binary representation
title On a problem of Nathanson related to minimal asymptotic bases of order $h$
title_full On a problem of Nathanson related to minimal asymptotic bases of order $h$
title_fullStr On a problem of Nathanson related to minimal asymptotic bases of order $h$
title_full_unstemmed On a problem of Nathanson related to minimal asymptotic bases of order $h$
title_short On a problem of Nathanson related to minimal asymptotic bases of order $h$
title_sort on a problem of nathanson related to minimal asymptotic bases of order h
topic Asymptotic bases
minimal asymptotic bases
binary representation
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.530/
work_keys_str_mv AT chenshiqiang onaproblemofnathansonrelatedtominimalasymptoticbasesoforderh
AT sandorcsaba onaproblemofnathansonrelatedtominimalasymptoticbasesoforderh
AT yangquanhui onaproblemofnathansonrelatedtominimalasymptoticbasesoforderh