Correct order on some certain weighted representation functions

Let $\mathbb{N}$ be the set of all nonnegative integers. For any positive integer $k$ and any subset $A$ of nonnegative integers, let $r_{1,k}(A,n)$ be the number of solutions $(a_1,a_2)$ to the equation $n=a_1+ka_2$. In 2016, Qu proved that \[ \liminf _{n\,\rightarrow \,\infty }r_{1,k}(A,n)=\infty...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Shi-Qiang, Ding, Yuchen, Lü, Xiaodong, Zhang, Yuhan
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.573/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $\mathbb{N}$ be the set of all nonnegative integers. For any positive integer $k$ and any subset $A$ of nonnegative integers, let $r_{1,k}(A,n)$ be the number of solutions $(a_1,a_2)$ to the equation $n=a_1+ka_2$. In 2016, Qu proved that \[ \liminf _{n\,\rightarrow \,\infty }r_{1,k}(A,n)=\infty \] providing that $r_{1,k}(A,n)=r_{1,k}(\mathbb{N}\setminus A,n)$ for all sufficiently large integers, which answered affirmatively a 2012 problem of Yang and Chen. In a very recent article, another Chen (the first named author) slightly improved Qu’s result and obtained that \[ \liminf _{n\,\rightarrow \,\infty }\frac{r_{1,k}(A,n)}{\log n}>0. \] In this note, we further improve the lower bound on $r_{1,k}(A,n)$ by showing that \[ \liminf _{n\,\rightarrow \,\infty }\frac{r_{1,k}(A,n)}{n}>0. \] Our bound reflects the correct order of magnitude of the representation function $r_{1,k}(A,n)$ under the above restrictions due to the trivial fact that $r_{1,k}(A,n)\le n/k.$
ISSN:1778-3569