On optimal regularity estimates for finite-entropy solutions of scalar conservation laws

We consider finite-entropy solutions of scalar conservation laws $u_t +a(u)_x =0$, that is, bounded weak solutions whose entropy productions are locally finite Radon measures. Under the assumptions that the flux function $a$ is strictly convex (with possibly degenerate convexity) and $a^{\prime \pri...

Full description

Saved in:
Bibliographic Details
Main Authors: Lamy, Xavier, Lorent, Andrew, Peng, Guanying
Format: Article
Language:English
Published: Académie des sciences 2023-03-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.427/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206254645018624
author Lamy, Xavier
Lorent, Andrew
Peng, Guanying
author_facet Lamy, Xavier
Lorent, Andrew
Peng, Guanying
author_sort Lamy, Xavier
collection DOAJ
description We consider finite-entropy solutions of scalar conservation laws $u_t +a(u)_x =0$, that is, bounded weak solutions whose entropy productions are locally finite Radon measures. Under the assumptions that the flux function $a$ is strictly convex (with possibly degenerate convexity) and $a^{\prime \prime }$ forms a doubling measure, we obtain a characterization of finite-entropy solutions in terms of an optimal regularity estimate involving a cost function first used by Golse and Perthame.
format Article
id doaj-art-a370e13c0b7247d3b991853df680ba5d
institution Kabale University
issn 1778-3569
language English
publishDate 2023-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-a370e13c0b7247d3b991853df680ba5d2025-02-07T11:07:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-03-01361G359960810.5802/crmath.42710.5802/crmath.427On optimal regularity estimates for finite-entropy solutions of scalar conservation lawsLamy, Xavier0Lorent, Andrew1Peng, Guanying2Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPSIMT, F-31062 Toulouse Cedex 9, France.Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA.We consider finite-entropy solutions of scalar conservation laws $u_t +a(u)_x =0$, that is, bounded weak solutions whose entropy productions are locally finite Radon measures. Under the assumptions that the flux function $a$ is strictly convex (with possibly degenerate convexity) and $a^{\prime \prime }$ forms a doubling measure, we obtain a characterization of finite-entropy solutions in terms of an optimal regularity estimate involving a cost function first used by Golse and Perthame.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.427/
spellingShingle Lamy, Xavier
Lorent, Andrew
Peng, Guanying
On optimal regularity estimates for finite-entropy solutions of scalar conservation laws
Comptes Rendus. Mathématique
title On optimal regularity estimates for finite-entropy solutions of scalar conservation laws
title_full On optimal regularity estimates for finite-entropy solutions of scalar conservation laws
title_fullStr On optimal regularity estimates for finite-entropy solutions of scalar conservation laws
title_full_unstemmed On optimal regularity estimates for finite-entropy solutions of scalar conservation laws
title_short On optimal regularity estimates for finite-entropy solutions of scalar conservation laws
title_sort on optimal regularity estimates for finite entropy solutions of scalar conservation laws
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.427/
work_keys_str_mv AT lamyxavier onoptimalregularityestimatesforfiniteentropysolutionsofscalarconservationlaws
AT lorentandrew onoptimalregularityestimatesforfiniteentropysolutionsofscalarconservationlaws
AT pengguanying onoptimalregularityestimatesforfiniteentropysolutionsofscalarconservationlaws