Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source

This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t} =-\nabla \cdot (\chi u \nabla v)+g(u), \qquad x\in \Omega , \ t>0,\\ \;\;\; 0 =\Delta v-v+u, \hspace{58.33328pt}x\in \Omega , \ t&...

Full description

Saved in:
Bibliographic Details
Main Author: Baghaei, khadijeh
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.397/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206324579794944
author Baghaei, khadijeh
author_facet Baghaei, khadijeh
author_sort Baghaei, khadijeh
collection DOAJ
description This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t} =-\nabla \cdot (\chi u \nabla v)+g(u), \qquad x\in \Omega , \ t>0,\\ \;\;\; 0 =\Delta v-v+u, \hspace{58.33328pt}x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^{n}, n\ge 1,$ with smooth boundary and the function $g$ is assumed to generalize the logistic source: \begin{equation*} g(s)\le a s - b s^{\gamma }\ \text{ for} \ s>0 \end{equation*} with $1<\gamma \le 2.$ For $b<\chi $ and some suitable conditions on parameters of problem, we prove that the solutions of this problem blow up in finite time. This result extend the obtained results for this problem.
format Article
id doaj-art-a5fe3be03d684bfba0499d4313240f38
institution Kabale University
issn 1778-3569
language English
publishDate 2023-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-a5fe3be03d684bfba0499d4313240f382025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G120721510.5802/crmath.39710.5802/crmath.397Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic sourceBaghaei, khadijeh0School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, IranThis paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t} =-\nabla \cdot (\chi u \nabla v)+g(u), \qquad x\in \Omega , \ t>0,\\ \;\;\; 0 =\Delta v-v+u, \hspace{58.33328pt}x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^{n}, n\ge 1,$ with smooth boundary and the function $g$ is assumed to generalize the logistic source: \begin{equation*} g(s)\le a s - b s^{\gamma }\ \text{ for} \ s>0 \end{equation*} with $1<\gamma \le 2.$ For $b<\chi $ and some suitable conditions on parameters of problem, we prove that the solutions of this problem blow up in finite time. This result extend the obtained results for this problem.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.397/
spellingShingle Baghaei, khadijeh
Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
Comptes Rendus. Mathématique
title Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
title_full Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
title_fullStr Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
title_full_unstemmed Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
title_short Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
title_sort blow up of nonradial solutions to the hyperbolic elliptic chemotaxis system with logistic source
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.397/
work_keys_str_mv AT baghaeikhadijeh blowupofnonradialsolutionstothehyperbolicellipticchemotaxissystemwithlogisticsource