An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing

We have developed a new simple iterative algorithm to determine entries of a normalized matrix given its marginal probabilities. Our method has been successfully used to obtain two different solutions by maximizing the entropy of a desired matrix and by minimizing its Kullback–Leibler divergence fro...

Full description

Saved in:
Bibliographic Details
Main Authors: Chlebus, Edward, Kasapu, Viswatej
Format: Article
Language:English
Published: Académie des sciences 2023-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.398/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206255980904448
author Chlebus, Edward
Kasapu, Viswatej
author_facet Chlebus, Edward
Kasapu, Viswatej
author_sort Chlebus, Edward
collection DOAJ
description We have developed a new simple iterative algorithm to determine entries of a normalized matrix given its marginal probabilities. Our method has been successfully used to obtain two different solutions by maximizing the entropy of a desired matrix and by minimizing its Kullback–Leibler divergence from the initial probability distribution. The latter is fully equivalent to the well-known RAS balancing algorithm. The presented method has been evaluated using a traffic matrix of the GÉANT pan-European network and randomly generated matrices of various sparsities. It turns out to be computationally faster than RAS. We have shown that our approach is suitable for efficient balancing both dense and sparse matrices.
format Article
id doaj-art-a764b32d1c8f4a5291a791596b17193e
institution Kabale University
issn 1778-3569
language English
publishDate 2023-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-a764b32d1c8f4a5291a791596b17193e2025-02-07T11:07:37ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-05-01361G473774610.5802/crmath.39810.5802/crmath.398An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix BalancingChlebus, Edward0Kasapu, Viswatej1Department of Computer Science, Illinois Institute of Technology, 10 W. 31st St., Chicago, Illinois 60616, USADepartment of Computer Science, Illinois Institute of Technology, 10 W. 31st St., Chicago, Illinois 60616, USAWe have developed a new simple iterative algorithm to determine entries of a normalized matrix given its marginal probabilities. Our method has been successfully used to obtain two different solutions by maximizing the entropy of a desired matrix and by minimizing its Kullback–Leibler divergence from the initial probability distribution. The latter is fully equivalent to the well-known RAS balancing algorithm. The presented method has been evaluated using a traffic matrix of the GÉANT pan-European network and randomly generated matrices of various sparsities. It turns out to be computationally faster than RAS. We have shown that our approach is suitable for efficient balancing both dense and sparse matrices.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.398/
spellingShingle Chlebus, Edward
Kasapu, Viswatej
An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing
Comptes Rendus. Mathématique
title An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing
title_full An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing
title_fullStr An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing
title_full_unstemmed An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing
title_short An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing
title_sort entropy optimizing ras equivalent algorithm for iterative matrix balancing
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.398/
work_keys_str_mv AT chlebusedward anentropyoptimizingrasequivalentalgorithmforiterativematrixbalancing
AT kasapuviswatej anentropyoptimizingrasequivalentalgorithmforiterativematrixbalancing
AT chlebusedward entropyoptimizingrasequivalentalgorithmforiterativematrixbalancing
AT kasapuviswatej entropyoptimizingrasequivalentalgorithmforiterativematrixbalancing