Distributed representations enable robust multi-timescale symbolic computation in neuromorphic hardware

Programming recurrent spiking neural networks (RSNNs) to robustly perform multi-timescale computation remains a difficult challenge. To address this, we describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs, by exploiting the properties of...

Full description

Saved in:
Bibliographic Details
Main Authors: Madison Cotteret, Hugh Greatorex, Alpha Renner, Junren Chen, Emre Neftci, Huaqiang Wu, Giacomo Indiveri, Martin Ziegler, Elisabetta Chicca
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:Neuromorphic Computing and Engineering
Subjects:
Online Access:https://doi.org/10.1088/2634-4386/ada851
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Programming recurrent spiking neural networks (RSNNs) to robustly perform multi-timescale computation remains a difficult challenge. To address this, we describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs, by exploiting the properties of high-dimensional distributed representations. We embed finite state machines into the RSNN dynamics by superimposing a symmetric autoassociative weight matrix and asymmetric transition terms, which are each formed by the vector binding of an input and heteroassociative outer-products between states. Our approach is validated through simulations with highly nonideal weights; an experimental closed-loop memristive hardware setup; and on Loihi 2, where it scales seamlessly to large state machines. This work introduces a scalable approach to embed robust symbolic computation through recurrent dynamics into neuromorphic hardware, without requiring parameter fine-tuning or significant platform-specific optimisation. Moreover, it demonstrates that distributed symbolic representations serve as a highly capable representation-invariant language for cognitive algorithms in neuromorphic hardware.
ISSN:2634-4386