A Multifeature Fusion Network for Tree Species Classification Based on Ground-Based LiDAR Data
Light detection and ranging (LiDAR) holds considerable promise for tree species classification. Existing networks that utilize point clouds of individual trees have shown promising results. However, challenges, such as incomplete point cloud data, uneven point density across different components of...
Saved in:
Main Authors: | Yaoting Liu, Yiming Chen, Zhengjun Liu, Jianchang Chen, Yuxuan Liu |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10834575/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Efficient Moving Object Segmentation in LiDAR Point Clouds Using Minimal Number of Sweeps
by: Zoltan Rozsa, et al.
Published: (2025-01-01) -
PENGEMBANGAN SISTEM KOMBINASI KERJA REM, STEER, DAN TRAKSI BERBASIS LiDAR 3D UNTUK KENDARAAN LISTRIK OTONOM RODA TIGA
by: Fabian Akbar, et al.
Published: (2024-07-01) -
Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors
by: Simon Speth, et al.
Published: (2025-01-01) -
Fine-grained vehicle recognition under low light conditions using EfficientNet and image enhancement on LiDAR point cloud data
by: Guanqiang Ruan, et al.
Published: (2025-02-01) -
Overcoming single-technology limitations in digital heritage preservation: A study of the LiPhoScan 3D reconstruction model
by: Yao Wang, et al.
Published: (2025-04-01)