Multiplicities of Representations in Algebraic Families

In this short notes, we consider multiplicities of representations in general algebraic families, especially the upper semi-continuity of homological multiplicities and the locally constancy of Euler–Poincaré numbers. This generalizes the main result of Aizenbud–Sayag for unramified twisting familie...

Full description

Saved in:
Bibliographic Details
Main Authors: Cai, Li, Fan, Yangyu
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.623/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206182571147264
author Cai, Li
Fan, Yangyu
author_facet Cai, Li
Fan, Yangyu
author_sort Cai, Li
collection DOAJ
description In this short notes, we consider multiplicities of representations in general algebraic families, especially the upper semi-continuity of homological multiplicities and the locally constancy of Euler–Poincaré numbers. This generalizes the main result of Aizenbud–Sayag for unramified twisting families.
format Article
id doaj-art-bee2889b88cf42518743147d4d6fb1ef
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-bee2889b88cf42518743147d4d6fb1ef2025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101097110710.5802/crmath.62310.5802/crmath.623Multiplicities of Representations in Algebraic FamiliesCai, Li0Fan, Yangyu1Academy for Multidisciplinary Studies, Beijing National Center for Applied Mathematics, Capital Normal University, Beijing, 100048, People’s Republic of ChinaSchool of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, ChinaIn this short notes, we consider multiplicities of representations in general algebraic families, especially the upper semi-continuity of homological multiplicities and the locally constancy of Euler–Poincaré numbers. This generalizes the main result of Aizenbud–Sayag for unramified twisting families.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.623/Branching lawsHomological multiplicitiesSpherical varieties
spellingShingle Cai, Li
Fan, Yangyu
Multiplicities of Representations in Algebraic Families
Comptes Rendus. Mathématique
Branching laws
Homological multiplicities
Spherical varieties
title Multiplicities of Representations in Algebraic Families
title_full Multiplicities of Representations in Algebraic Families
title_fullStr Multiplicities of Representations in Algebraic Families
title_full_unstemmed Multiplicities of Representations in Algebraic Families
title_short Multiplicities of Representations in Algebraic Families
title_sort multiplicities of representations in algebraic families
topic Branching laws
Homological multiplicities
Spherical varieties
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.623/
work_keys_str_mv AT caili multiplicitiesofrepresentationsinalgebraicfamilies
AT fanyangyu multiplicitiesofrepresentationsinalgebraicfamilies