The Dual Characteristic-Galerkin Method

The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and $L^2$-stability in the case of Neumann boundary conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteri...

Full description

Saved in:
Bibliographic Details
Main Authors: Hecht, Frédéric, Pironneau, Olivier
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.598/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and $L^2$-stability in the case of Neumann boundary conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteristic-Galerkin (PCGM), Streamline upwinding (SUPG), the Dual Discontinuous Galerkin method (DDG) and centered FEM without upwinding. DCGM is difficult to implement numerically but, in the numerical context of this note, it is far superior to all others.
ISSN:1778-3569