The Dual Characteristic-Galerkin Method

The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and $L^2$-stability in the case of Neumann boundary conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteri...

Full description

Saved in:
Bibliographic Details
Main Authors: Hecht, Frédéric, Pironneau, Olivier
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.598/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206183035666432
author Hecht, Frédéric
Pironneau, Olivier
author_facet Hecht, Frédéric
Pironneau, Olivier
author_sort Hecht, Frédéric
collection DOAJ
description The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and $L^2$-stability in the case of Neumann boundary conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteristic-Galerkin (PCGM), Streamline upwinding (SUPG), the Dual Discontinuous Galerkin method (DDG) and centered FEM without upwinding. DCGM is difficult to implement numerically but, in the numerical context of this note, it is far superior to all others.
format Article
id doaj-art-bffe5f1f6cb346aaa46d1c7ef2f38198
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-bffe5f1f6cb346aaa46d1c7ef2f381982025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101109111910.5802/crmath.59810.5802/crmath.598The Dual Characteristic-Galerkin MethodHecht, Frédéric0Pironneau, Olivier1LJLL, Boite 187, Sorbonne Université, Place Jussieu, 75005 Paris, FranceLJLL, Boite 187, Sorbonne Université, Place Jussieu, 75005 Paris, FranceThe Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and $L^2$-stability in the case of Neumann boundary conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteristic-Galerkin (PCGM), Streamline upwinding (SUPG), the Dual Discontinuous Galerkin method (DDG) and centered FEM without upwinding. DCGM is difficult to implement numerically but, in the numerical context of this note, it is far superior to all others.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.598/Partial differential equationsconvection-diffusionnumerical methodfinite element method
spellingShingle Hecht, Frédéric
Pironneau, Olivier
The Dual Characteristic-Galerkin Method
Comptes Rendus. Mathématique
Partial differential equations
convection-diffusion
numerical method
finite element method
title The Dual Characteristic-Galerkin Method
title_full The Dual Characteristic-Galerkin Method
title_fullStr The Dual Characteristic-Galerkin Method
title_full_unstemmed The Dual Characteristic-Galerkin Method
title_short The Dual Characteristic-Galerkin Method
title_sort dual characteristic galerkin method
topic Partial differential equations
convection-diffusion
numerical method
finite element method
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.598/
work_keys_str_mv AT hechtfrederic thedualcharacteristicgalerkinmethod
AT pironneauolivier thedualcharacteristicgalerkinmethod
AT hechtfrederic dualcharacteristicgalerkinmethod
AT pironneauolivier dualcharacteristicgalerkinmethod