A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction
We investigate the two-species chemotaxis predator-prey system given by the following system: ut=Δu−χ∇⋅(u∇w)+u(λ1−μ1ur1−1+av),x∈Ω,t>0,vt=Δv+ξ∇⋅(v∇z)+v(λ2−μ2vr2−1−bu),x∈Ω,t>0,0=Δw−w+v,x∈Ω,t>0,0=Δz−z+u,x∈Ω,t>0,\left\{\begin{array}{ll}{u}_{t}=\Delta u-\chi \nabla \cdot \left(u\nabla w)+u\le...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2025-02-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2024-0122 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823860526505000960 |
---|---|
author | Liu Ling |
author_facet | Liu Ling |
author_sort | Liu Ling |
collection | DOAJ |
description | We investigate the two-species chemotaxis predator-prey system given by the following system: ut=Δu−χ∇⋅(u∇w)+u(λ1−μ1ur1−1+av),x∈Ω,t>0,vt=Δv+ξ∇⋅(v∇z)+v(λ2−μ2vr2−1−bu),x∈Ω,t>0,0=Δw−w+v,x∈Ω,t>0,0=Δz−z+u,x∈Ω,t>0,\left\{\begin{array}{ll}{u}_{t}=\Delta u-\chi \nabla \cdot \left(u\nabla w)+u\left({\lambda }_{1}-{\mu }_{1}{u}^{{r}_{1}-1}+av),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ {v}_{t}=\Delta v+\xi \nabla \cdot \left(v\nabla z)+v\left({\lambda }_{2}-{\mu }_{2}{v}^{{r}_{2}-1}-bu),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta w-w+v,& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta z-z+u,& x\in \Omega ,\hspace{0.33em}t\gt 0,\end{array}\right. in a bounded domain Ω⊂RN(N≥1)\Omega \subset {{\mathbb{R}}}^{N}\left(N\ge 1) with smooth boundary, where parameters χ,ξ,λi,μi>0\chi ,\xi ,{\lambda }_{i},{\mu }_{i}\gt 0, and ri>1(i=1,2){r}_{i}\gt 1\hspace{0.33em}\left(i=1,2). Under appropriate conditions, utilizing suitable a priori estimates, we demonstrate that if (N−2)+N<max(r1−1)(r2−1),4N2,(r1−1)2N,(r2−1)2N\frac{{\left(N-2)}_{+}}{N}\lt \max \left\{\phantom{\rule[-0.95em]{}{0ex}},\left({r}_{1}-1)\left({r}_{2}-1),\frac{4}{{N}^{2}},\left({r}_{1}-1)\frac{2}{N},\left({r}_{2}-1)\frac{2}{N}\right\}, then the system admits a unique, uniformly bounded global classical solution. This finding extends the results of several previous studies. |
format | Article |
id | doaj-art-c0e6cecc924d49b29867ba1913883830 |
institution | Kabale University |
issn | 2391-5455 |
language | English |
publishDate | 2025-02-01 |
publisher | De Gruyter |
record_format | Article |
series | Open Mathematics |
spelling | doaj-art-c0e6cecc924d49b29867ba19138838302025-02-10T13:24:36ZengDe GruyterOpen Mathematics2391-54552025-02-012312402243510.1515/math-2024-0122A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interactionLiu Ling0Department of Basic Science, Jilin Jianzhu University, Changchun 130118, P. R. ChinaWe investigate the two-species chemotaxis predator-prey system given by the following system: ut=Δu−χ∇⋅(u∇w)+u(λ1−μ1ur1−1+av),x∈Ω,t>0,vt=Δv+ξ∇⋅(v∇z)+v(λ2−μ2vr2−1−bu),x∈Ω,t>0,0=Δw−w+v,x∈Ω,t>0,0=Δz−z+u,x∈Ω,t>0,\left\{\begin{array}{ll}{u}_{t}=\Delta u-\chi \nabla \cdot \left(u\nabla w)+u\left({\lambda }_{1}-{\mu }_{1}{u}^{{r}_{1}-1}+av),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ {v}_{t}=\Delta v+\xi \nabla \cdot \left(v\nabla z)+v\left({\lambda }_{2}-{\mu }_{2}{v}^{{r}_{2}-1}-bu),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta w-w+v,& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta z-z+u,& x\in \Omega ,\hspace{0.33em}t\gt 0,\end{array}\right. in a bounded domain Ω⊂RN(N≥1)\Omega \subset {{\mathbb{R}}}^{N}\left(N\ge 1) with smooth boundary, where parameters χ,ξ,λi,μi>0\chi ,\xi ,{\lambda }_{i},{\mu }_{i}\gt 0, and ri>1(i=1,2){r}_{i}\gt 1\hspace{0.33em}\left(i=1,2). Under appropriate conditions, utilizing suitable a priori estimates, we demonstrate that if (N−2)+N<max(r1−1)(r2−1),4N2,(r1−1)2N,(r2−1)2N\frac{{\left(N-2)}_{+}}{N}\lt \max \left\{\phantom{\rule[-0.95em]{}{0ex}},\left({r}_{1}-1)\left({r}_{2}-1),\frac{4}{{N}^{2}},\left({r}_{1}-1)\frac{2}{N},\left({r}_{2}-1)\frac{2}{N}\right\}, then the system admits a unique, uniformly bounded global classical solution. This finding extends the results of several previous studies.https://doi.org/10.1515/math-2024-0122chemotaxisboundednessglobal existencepursuit-evasion35k2035k5592c17 |
spellingShingle | Liu Ling A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction Open Mathematics chemotaxis boundedness global existence pursuit-evasion 35k20 35k55 92c17 |
title | A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction |
title_full | A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction |
title_fullStr | A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction |
title_full_unstemmed | A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction |
title_short | A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction |
title_sort | note on the global existence and boundedness of an n dimensional parabolic elliptic predator prey system with indirect pursuit evasion interaction |
topic | chemotaxis boundedness global existence pursuit-evasion 35k20 35k55 92c17 |
url | https://doi.org/10.1515/math-2024-0122 |
work_keys_str_mv | AT liuling anoteontheglobalexistenceandboundednessofanndimensionalparabolicellipticpredatorpreysystemwithindirectpursuitevasioninteraction AT liuling noteontheglobalexistenceandboundednessofanndimensionalparabolicellipticpredatorpreysystemwithindirectpursuitevasioninteraction |