On the number of residues of certain second-order linear recurrences

For every monic polynomial $f \in \mathbb{Z}[X]$ with $\deg (f) \ge 1$, let $\mathcal{L}(f)$ be the set of all linear recurrences with values in $\mathbb{Z}$ and characteristic polynomial $f$, and let \begin{equation*} \mathcal{R}(f) :=\big \lbrace \rho (x; m) : x \in \mathcal{L}(f), \, m \in \math...

Full description

Saved in:
Bibliographic Details
Main Authors: Accossato, Federico, Sanna, Carlo
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.647/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206183837827072
author Accossato, Federico
Sanna, Carlo
author_facet Accossato, Federico
Sanna, Carlo
author_sort Accossato, Federico
collection DOAJ
description For every monic polynomial $f \in \mathbb{Z}[X]$ with $\deg (f) \ge 1$, let $\mathcal{L}(f)$ be the set of all linear recurrences with values in $\mathbb{Z}$ and characteristic polynomial $f$, and let \begin{equation*} \mathcal{R}(f) :=\big \lbrace \rho (x; m) : x \in \mathcal{L}(f), \, m \in \mathbb{Z}^+ \big \rbrace , \end{equation*} where $\rho (x; m)$ is the number of distinct residues of $x$ modulo $m$.Dubickas and Novikas proved that $\mathcal{R}(X^2 - X - 1) = \mathbb{Z}^+$. We generalize this result by showing that $\mathcal{R}(X^2 - a_1 X - 1) = \mathbb{Z}^+$ for every nonzero integer $a_1$. As a corollary, we deduce that for all integers $a_1 \ge 1$ and $k \ge 2$ there exists $\xi \in \mathbb{R}$ such that the sequence of fractional parts $\bigl (\mathrm{frac}(\xi \alpha ^n)\big )_{n \ge 0}$, where $\alpha :=\big (a_1 + \sqrt{a_1^2 + 4}\,\big ) / 2$, has exactly $k$ limit points. Our proofs are constructive and employ some results on the existence of special primitive divisors of certain Lehmer sequences.
format Article
id doaj-art-c1a7e977605f40109447dc2603ee86f2
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-c1a7e977605f40109447dc2603ee86f22025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111365137710.5802/crmath.64710.5802/crmath.647On the number of residues of certain second-order linear recurrencesAccossato, Federico0https://orcid.org/0009-0004-9861-0153Sanna, Carlo1https://orcid.org/0000-0002-2111-7596Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, ItalyDepartment of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, ItalyFor every monic polynomial $f \in \mathbb{Z}[X]$ with $\deg (f) \ge 1$, let $\mathcal{L}(f)$ be the set of all linear recurrences with values in $\mathbb{Z}$ and characteristic polynomial $f$, and let \begin{equation*} \mathcal{R}(f) :=\big \lbrace \rho (x; m) : x \in \mathcal{L}(f), \, m \in \mathbb{Z}^+ \big \rbrace , \end{equation*} where $\rho (x; m)$ is the number of distinct residues of $x$ modulo $m$.Dubickas and Novikas proved that $\mathcal{R}(X^2 - X - 1) = \mathbb{Z}^+$. We generalize this result by showing that $\mathcal{R}(X^2 - a_1 X - 1) = \mathbb{Z}^+$ for every nonzero integer $a_1$. As a corollary, we deduce that for all integers $a_1 \ge 1$ and $k \ge 2$ there exists $\xi \in \mathbb{R}$ such that the sequence of fractional parts $\bigl (\mathrm{frac}(\xi \alpha ^n)\big )_{n \ge 0}$, where $\alpha :=\big (a_1 + \sqrt{a_1^2 + 4}\,\big ) / 2$, has exactly $k$ limit points. Our proofs are constructive and employ some results on the existence of special primitive divisors of certain Lehmer sequences.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.647/Fractional parts of powersLehmer sequenceslinear recurrencesPisot numbersprimitive divisorsresidues
spellingShingle Accossato, Federico
Sanna, Carlo
On the number of residues of certain second-order linear recurrences
Comptes Rendus. Mathématique
Fractional parts of powers
Lehmer sequences
linear recurrences
Pisot numbers
primitive divisors
residues
title On the number of residues of certain second-order linear recurrences
title_full On the number of residues of certain second-order linear recurrences
title_fullStr On the number of residues of certain second-order linear recurrences
title_full_unstemmed On the number of residues of certain second-order linear recurrences
title_short On the number of residues of certain second-order linear recurrences
title_sort on the number of residues of certain second order linear recurrences
topic Fractional parts of powers
Lehmer sequences
linear recurrences
Pisot numbers
primitive divisors
residues
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.647/
work_keys_str_mv AT accossatofederico onthenumberofresiduesofcertainsecondorderlinearrecurrences
AT sannacarlo onthenumberofresiduesofcertainsecondorderlinearrecurrences