$L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups

We prove the $L^p-L^q$ $(1

Saved in:
Bibliographic Details
Main Authors: Gómez Cobos, Santiago, Restrepo, Joel E., Ruzhansky, Michael
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.643/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206184101019648
author Gómez Cobos, Santiago
Restrepo, Joel E.
Ruzhansky, Michael
author_facet Gómez Cobos, Santiago
Restrepo, Joel E.
Ruzhansky, Michael
author_sort Gómez Cobos, Santiago
collection DOAJ
description We prove the $L^p-L^q$ $(1
format Article
id doaj-art-c203ac4a8dde4267a38adae9c21ec893
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-c203ac4a8dde4267a38adae9c21ec8932025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111331133610.5802/crmath.64310.5802/crmath.643$L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groupsGómez Cobos, Santiago0Restrepo, Joel E.1https://orcid.org/0000-0002-2381-7334Ruzhansky, Michael2https://orcid.org/0000-0001-8633-5570Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, B 9000 Ghent, BelgiumDepartment of Mathematics, Cinvestav IPN, Mexico city, Mexico; Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, B 9000 Ghent, BelgiumDepartment of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, B 9000 Ghent, Belgium; School of Mathematical Sciences, Queen Mary University of London, United KingdomWe prove the $L^p-L^q$ $(1https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.643/Locally compact groupsheat type equationswave type equationsasymptotic estimatesnon-local operators
spellingShingle Gómez Cobos, Santiago
Restrepo, Joel E.
Ruzhansky, Michael
$L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
Comptes Rendus. Mathématique
Locally compact groups
heat type equations
wave type equations
asymptotic estimates
non-local operators
title $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
title_full $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
title_fullStr $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
title_full_unstemmed $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
title_short $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
title_sort l p l q estimates for non local heat and wave type equations on locally compact groups
topic Locally compact groups
heat type equations
wave type equations
asymptotic estimates
non-local operators
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.643/
work_keys_str_mv AT gomezcobossantiago lplqestimatesfornonlocalheatandwavetypeequationsonlocallycompactgroups
AT restrepojoele lplqestimatesfornonlocalheatandwavetypeequationsonlocallycompactgroups
AT ruzhanskymichael lplqestimatesfornonlocalheatandwavetypeequationsonlocallycompactgroups