Invariants de Witt des involutions de bas degré en caractéristique 2
A $3$-fold and a $5$-fold quadratic Pfister forms are canonically associated to every symplectic involution on a central simple algebra of degree $8$ over a field of characteristic $2$. The same construction on central simple algebras of degree $4$ associates to every unitary involution a $2$-fold a...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.640/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206189409959936 |
---|---|
author | Tignol, Jean-Pierre |
author_facet | Tignol, Jean-Pierre |
author_sort | Tignol, Jean-Pierre |
collection | DOAJ |
description | A $3$-fold and a $5$-fold quadratic Pfister forms are canonically associated to every symplectic involution on a central simple algebra of degree $8$ over a field of characteristic $2$. The same construction on central simple algebras of degree $4$ associates to every unitary involution a $2$-fold and a $4$-fold Pfister quadratic forms, and to every orthogonal involution a $1$-fold and a $3$-fold quasi-Pfister forms. These forms hold structural information on the algebra with involution. |
format | Article |
id | doaj-art-cc47eb24315045a3becb1db8c6b92a5f |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-cc47eb24315045a3becb1db8c6b92a5f2025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101261127110.5802/crmath.64010.5802/crmath.640Invariants de Witt des involutions de bas degré en caractéristique 2Tignol, Jean-Pierre0ICTEAM, UCLouvain, 4 avenue G. Lemaître, boîte L4.05.01, B-1348 Louvain-la-Neuve, BelgiqueA $3$-fold and a $5$-fold quadratic Pfister forms are canonically associated to every symplectic involution on a central simple algebra of degree $8$ over a field of characteristic $2$. The same construction on central simple algebras of degree $4$ associates to every unitary involution a $2$-fold and a $4$-fold Pfister quadratic forms, and to every orthogonal involution a $1$-fold and a $3$-fold quasi-Pfister forms. These forms hold structural information on the algebra with involution.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.640/Algèbre simple centrale à involutioncomposition de formes quadratiquesformes quadratiques de Pfister |
spellingShingle | Tignol, Jean-Pierre Invariants de Witt des involutions de bas degré en caractéristique 2 Comptes Rendus. Mathématique Algèbre simple centrale à involution composition de formes quadratiques formes quadratiques de Pfister |
title | Invariants de Witt des involutions de bas degré en caractéristique 2 |
title_full | Invariants de Witt des involutions de bas degré en caractéristique 2 |
title_fullStr | Invariants de Witt des involutions de bas degré en caractéristique 2 |
title_full_unstemmed | Invariants de Witt des involutions de bas degré en caractéristique 2 |
title_short | Invariants de Witt des involutions de bas degré en caractéristique 2 |
title_sort | invariants de witt des involutions de bas degre en caracteristique 2 |
topic | Algèbre simple centrale à involution composition de formes quadratiques formes quadratiques de Pfister |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.640/ |
work_keys_str_mv | AT tignoljeanpierre invariantsdewittdesinvolutionsdebasdegreencaracteristique2 |