Invariants de Witt des involutions de bas degré en caractéristique 2

A $3$-fold and a $5$-fold quadratic Pfister forms are canonically associated to every symplectic involution on a central simple algebra of degree $8$ over a field of characteristic $2$. The same construction on central simple algebras of degree $4$ associates to every unitary involution a $2$-fold a...

Full description

Saved in:
Bibliographic Details
Main Author: Tignol, Jean-Pierre
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.640/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206189409959936
author Tignol, Jean-Pierre
author_facet Tignol, Jean-Pierre
author_sort Tignol, Jean-Pierre
collection DOAJ
description A $3$-fold and a $5$-fold quadratic Pfister forms are canonically associated to every symplectic involution on a central simple algebra of degree $8$ over a field of characteristic $2$. The same construction on central simple algebras of degree $4$ associates to every unitary involution a $2$-fold and a $4$-fold Pfister quadratic forms, and to every orthogonal involution a $1$-fold and a $3$-fold quasi-Pfister forms. These forms hold structural information on the algebra with involution.
format Article
id doaj-art-cc47eb24315045a3becb1db8c6b92a5f
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-cc47eb24315045a3becb1db8c6b92a5f2025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101261127110.5802/crmath.64010.5802/crmath.640Invariants de Witt des involutions de bas degré en caractéristique 2Tignol, Jean-Pierre0ICTEAM, UCLouvain, 4 avenue G. Lemaître, boîte L4.05.01, B-1348 Louvain-la-Neuve, BelgiqueA $3$-fold and a $5$-fold quadratic Pfister forms are canonically associated to every symplectic involution on a central simple algebra of degree $8$ over a field of characteristic $2$. The same construction on central simple algebras of degree $4$ associates to every unitary involution a $2$-fold and a $4$-fold Pfister quadratic forms, and to every orthogonal involution a $1$-fold and a $3$-fold quasi-Pfister forms. These forms hold structural information on the algebra with involution.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.640/Algèbre simple centrale à involutioncomposition de formes quadratiquesformes quadratiques de Pfister
spellingShingle Tignol, Jean-Pierre
Invariants de Witt des involutions de bas degré en caractéristique 2
Comptes Rendus. Mathématique
Algèbre simple centrale à involution
composition de formes quadratiques
formes quadratiques de Pfister
title Invariants de Witt des involutions de bas degré en caractéristique 2
title_full Invariants de Witt des involutions de bas degré en caractéristique 2
title_fullStr Invariants de Witt des involutions de bas degré en caractéristique 2
title_full_unstemmed Invariants de Witt des involutions de bas degré en caractéristique 2
title_short Invariants de Witt des involutions de bas degré en caractéristique 2
title_sort invariants de witt des involutions de bas degre en caracteristique 2
topic Algèbre simple centrale à involution
composition de formes quadratiques
formes quadratiques de Pfister
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.640/
work_keys_str_mv AT tignoljeanpierre invariantsdewittdesinvolutionsdebasdegreencaracteristique2