Conservation law of harmonic mappings in supercritical dimensions
In this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimension...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-09-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.592/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206267676721152 |
---|---|
author | Guo, Chang-Yu Xiang, Chang-Lin |
author_facet | Guo, Chang-Yu Xiang, Chang-Lin |
author_sort | Guo, Chang-Yu |
collection | DOAJ |
description | In this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimensions. |
format | Article |
id | doaj-art-d27ebe7ec07e4e12b657758d8ab3d143 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-09-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-d27ebe7ec07e4e12b657758d8ab3d1432025-02-07T11:22:28ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-09-01362G776977310.5802/crmath.59210.5802/crmath.592Conservation law of harmonic mappings in supercritical dimensionsGuo, Chang-Yu0Xiang, Chang-Lin1Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, 266237, Qingdao and Frontiers Science Center for Nonlinear Expectations, Ministry of Education, P. R. ChinaThree Gorges Mathematical Research Center, China Three Gorges University, 443002, Yichang, P. R. ChinaIn this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimensions.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.592/ |
spellingShingle | Guo, Chang-Yu Xiang, Chang-Lin Conservation law of harmonic mappings in supercritical dimensions Comptes Rendus. Mathématique |
title | Conservation law of harmonic mappings in supercritical dimensions |
title_full | Conservation law of harmonic mappings in supercritical dimensions |
title_fullStr | Conservation law of harmonic mappings in supercritical dimensions |
title_full_unstemmed | Conservation law of harmonic mappings in supercritical dimensions |
title_short | Conservation law of harmonic mappings in supercritical dimensions |
title_sort | conservation law of harmonic mappings in supercritical dimensions |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.592/ |
work_keys_str_mv | AT guochangyu conservationlawofharmonicmappingsinsupercriticaldimensions AT xiangchanglin conservationlawofharmonicmappingsinsupercriticaldimensions |