Conservation law of harmonic mappings in supercritical dimensions

In this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimension...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo, Chang-Yu, Xiang, Chang-Lin
Format: Article
Language:English
Published: Académie des sciences 2024-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.592/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206267676721152
author Guo, Chang-Yu
Xiang, Chang-Lin
author_facet Guo, Chang-Yu
Xiang, Chang-Lin
author_sort Guo, Chang-Yu
collection DOAJ
description In this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimensions.
format Article
id doaj-art-d27ebe7ec07e4e12b657758d8ab3d143
institution Kabale University
issn 1778-3569
language English
publishDate 2024-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-d27ebe7ec07e4e12b657758d8ab3d1432025-02-07T11:22:28ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-09-01362G776977310.5802/crmath.59210.5802/crmath.592Conservation law of harmonic mappings in supercritical dimensionsGuo, Chang-Yu0Xiang, Chang-Lin1Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, 266237, Qingdao and Frontiers Science Center for Nonlinear Expectations, Ministry of Education, P. R. ChinaThree Gorges Mathematical Research Center, China Three Gorges University, 443002, Yichang, P. R. ChinaIn this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimensions.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.592/
spellingShingle Guo, Chang-Yu
Xiang, Chang-Lin
Conservation law of harmonic mappings in supercritical dimensions
Comptes Rendus. Mathématique
title Conservation law of harmonic mappings in supercritical dimensions
title_full Conservation law of harmonic mappings in supercritical dimensions
title_fullStr Conservation law of harmonic mappings in supercritical dimensions
title_full_unstemmed Conservation law of harmonic mappings in supercritical dimensions
title_short Conservation law of harmonic mappings in supercritical dimensions
title_sort conservation law of harmonic mappings in supercritical dimensions
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.592/
work_keys_str_mv AT guochangyu conservationlawofharmonicmappingsinsupercriticaldimensions
AT xiangchanglin conservationlawofharmonicmappingsinsupercriticaldimensions