Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes

Tidur merupakan aktivitas dimana otak memberikan tubuh waktu istirahat secara total. Kualitas tidur penting untuk menjaga kondisi fisik maupun mental seseorang. Buruknya kualitas tidur disebabkan oleh gangguan tidur. Gangguan tidur yang paling umum terjadi adalah Sleep-disordered Breathing (SDB) at...

Full description

Saved in:
Bibliographic Details
Main Authors: Achmad Ghifari, Edita Rosana Widasari
Format: Article
Language:Indonesian
Published: University of Brawijaya 2023-08-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/6913
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858656638140416
author Achmad Ghifari
Edita Rosana Widasari
author_facet Achmad Ghifari
Edita Rosana Widasari
author_sort Achmad Ghifari
collection DOAJ
description Tidur merupakan aktivitas dimana otak memberikan tubuh waktu istirahat secara total. Kualitas tidur penting untuk menjaga kondisi fisik maupun mental seseorang. Buruknya kualitas tidur disebabkan oleh gangguan tidur. Gangguan tidur yang paling umum terjadi adalah Sleep-disordered Breathing (SDB) atau Sleep Apnea, dimana penderitanya akan mengalami henti napas secara berulang saat tertidur. Sleep Apnea dikategorikan menjadi 2, yaitu Obstructive Sleep Apnea (OSA) dan Central Sleep Apnea (CSA). Diagnosis gangguan tidur dilakukan dengan Polysomnography yang cenderung mahal dan kurang nyaman. Hasil Polysomnography juga tidak dapat langsung digunakan oleh dokter untuk evaluasi lebih lanjut. Oleh karena itu, pada penelitian ini dibuat sistem pendeteksi gangguan tidur ke dalam kelas Normal, OSA, atau CSA menggunakan sinyal Electrocardiography (ECG) yang diakuisisi dengan teknik 3-lead placement. Sistem ini menggunakan sensor AD8232 dalam mengakuisisi sinyal jantung yang akan diproses oleh Arduino Mega 2560 untuk mendapatkan fitur High dan Low Frequency dari sinyal yang kemudian digunakan untuk klasifikasi. Sistem ini memiliki akurasi sebesar 85% dalam melakukan klasifikasi SDB menggunakan metode Naïve Bayes dengan rata-rata waktu komputasi sebesar 12ms. Sistem ini dapat digunakan di rumah karena bersifat portable dan datanya dapat langsung diunduh melalui websiteuntuk evaluasi dokter, sehingga membuat pasien merasa lebih nyaman dan efisien dalam melakukan diagnosis dini.   Abstract  Sleep is an activity in which the brain gives the body total rest. The quality of sleep is important to maintain someone's physical and mental condition. Poor sleep quality is caused by sleep disorders. The most common sleep disorder is Sleep-Disordered Breathing (SDB) or Sleep Apnea, in which the sufferer will experience repeated pauses in breathing while asleep. Sleep Apnea is categorized into two, namely Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA). Sleep disorder diagnosis is done with Polysomnography which is expensive and uncomfortable. The result of Polysomnography can also not be directly used by doctors for further evaluation. Therefore, in this research, a system was created to detect sleep disorders into Normal, OSA, or CSA classes using Electrocardiography (ECG) signals acquired by the 3-lead placement technique. This system uses AD8232 sensors to acquire heart signals that are processed by Arduino Mega 2560 to obtain High and Low-frequency features of the signal, which are then used for classification. This system has an accuracy of 85% in classifying SDB using the Naive Bayes method with an average computation time of 12ms. This system can be used at home because it is portable and the data can be directly downloaded from the website for doctor evaluation, making the patient feel more comfortable and efficient in early diagnosis.
format Article
id doaj-art-de2abd4c58854a65bd49a6a3f082bd66
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2023-08-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-de2abd4c58854a65bd49a6a3f082bd662025-02-11T10:38:55ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792023-08-0110410.25126/jtiik.202410469131145Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve BayesAchmad Ghifari0Edita Rosana Widasari1Universitas Brawijaya, MalangUniversitas Brawijaya, Malang Tidur merupakan aktivitas dimana otak memberikan tubuh waktu istirahat secara total. Kualitas tidur penting untuk menjaga kondisi fisik maupun mental seseorang. Buruknya kualitas tidur disebabkan oleh gangguan tidur. Gangguan tidur yang paling umum terjadi adalah Sleep-disordered Breathing (SDB) atau Sleep Apnea, dimana penderitanya akan mengalami henti napas secara berulang saat tertidur. Sleep Apnea dikategorikan menjadi 2, yaitu Obstructive Sleep Apnea (OSA) dan Central Sleep Apnea (CSA). Diagnosis gangguan tidur dilakukan dengan Polysomnography yang cenderung mahal dan kurang nyaman. Hasil Polysomnography juga tidak dapat langsung digunakan oleh dokter untuk evaluasi lebih lanjut. Oleh karena itu, pada penelitian ini dibuat sistem pendeteksi gangguan tidur ke dalam kelas Normal, OSA, atau CSA menggunakan sinyal Electrocardiography (ECG) yang diakuisisi dengan teknik 3-lead placement. Sistem ini menggunakan sensor AD8232 dalam mengakuisisi sinyal jantung yang akan diproses oleh Arduino Mega 2560 untuk mendapatkan fitur High dan Low Frequency dari sinyal yang kemudian digunakan untuk klasifikasi. Sistem ini memiliki akurasi sebesar 85% dalam melakukan klasifikasi SDB menggunakan metode Naïve Bayes dengan rata-rata waktu komputasi sebesar 12ms. Sistem ini dapat digunakan di rumah karena bersifat portable dan datanya dapat langsung diunduh melalui websiteuntuk evaluasi dokter, sehingga membuat pasien merasa lebih nyaman dan efisien dalam melakukan diagnosis dini.   Abstract  Sleep is an activity in which the brain gives the body total rest. The quality of sleep is important to maintain someone's physical and mental condition. Poor sleep quality is caused by sleep disorders. The most common sleep disorder is Sleep-Disordered Breathing (SDB) or Sleep Apnea, in which the sufferer will experience repeated pauses in breathing while asleep. Sleep Apnea is categorized into two, namely Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA). Sleep disorder diagnosis is done with Polysomnography which is expensive and uncomfortable. The result of Polysomnography can also not be directly used by doctors for further evaluation. Therefore, in this research, a system was created to detect sleep disorders into Normal, OSA, or CSA classes using Electrocardiography (ECG) signals acquired by the 3-lead placement technique. This system uses AD8232 sensors to acquire heart signals that are processed by Arduino Mega 2560 to obtain High and Low-frequency features of the signal, which are then used for classification. This system has an accuracy of 85% in classifying SDB using the Naive Bayes method with an average computation time of 12ms. This system can be used at home because it is portable and the data can be directly downloaded from the website for doctor evaluation, making the patient feel more comfortable and efficient in early diagnosis. https://jtiik.ub.ac.id/index.php/jtiik/article/view/6913
spellingShingle Achmad Ghifari
Edita Rosana Widasari
Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes
Jurnal Teknologi Informasi dan Ilmu Komputer
title Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes
title_full Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes
title_fullStr Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes
title_full_unstemmed Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes
title_short Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes
title_sort sistem pendeteksi sleep disordered breathing berdasarkan high dan low frequency menggunakan metode naive bayes
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/6913
work_keys_str_mv AT achmadghifari sistempendeteksisleepdisorderedbreathingberdasarkanhighdanlowfrequencymenggunakanmetodenaivebayes
AT editarosanawidasari sistempendeteksisleepdisorderedbreathingberdasarkanhighdanlowfrequencymenggunakanmetodenaivebayes