Advanced retinal disease detection from OCT images using a hybrid squeeze and excitation enhanced model.

<h4>Background</h4>Retinal problems are critical because they can cause severe vision loss if not treated. Traditional methods for diagnosing retinal disorders often rely heavily on manual interpretation of optical coherence tomography (OCT) images, which can be time-consuming and depend...

Full description

Saved in:
Bibliographic Details
Main Authors: Gülcan Gencer, Kerem Gencer
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0318657
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<h4>Background</h4>Retinal problems are critical because they can cause severe vision loss if not treated. Traditional methods for diagnosing retinal disorders often rely heavily on manual interpretation of optical coherence tomography (OCT) images, which can be time-consuming and dependent on the expertise of ophthalmologists. This leads to challenges in early diagnosis, especially as retinal diseases like diabetic macular edema (DME), Drusen, and Choroidal neovascularization (CNV) become more prevalent. OCT helps ophthalmologists diagnose patients more accurately by allowing for early detection. This paper offers a hybrid SE (Squeeze-and-Excitation)-Enhanced Hybrid Model for detecting retinal disorders from OCT images, including DME, Drusen, and CNV, using artificial intelligence and deep learning.<h4>Methods</h4>The model integrates SE blocks with EfficientNetB0 and Xception architectures, which provide high success in image classification tasks. EfficientNetB0 achieves high accuracy with fewer parameters through model scaling strategies, while Xception offers powerful feature extraction using deep separable convolutions. The combination of these architectures enhances both the efficiency and classification performance of the model, enabling more accurate detection of retinal disorders from OCT images. Additionally, SE blocks increase the representational ability of the network by adaptively recalibrating per-channel feature responses.<h4>Results</h4>The combined features from EfficientNetB0 and Xception are processed via fully connected layers and categorized using the Softmax algorithm. The methodology was tested on UCSD and Duke's OCT datasets and produced excellent results. The proposed SE-Improved Hybrid Model outperformed the current best-known approaches, with accuracy rates of 99.58% on the UCSD dataset and 99.18% on the Duke dataset.<h4>Conclusion</h4>These findings emphasize the model's ability to effectively diagnose retinal disorders using OCT images and indicate substantial promise for the development of computer-aided diagnostic tools in the field of ophthalmology.
ISSN:1932-6203