Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source

This paper deals with the following chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \,\nabla u-u \,\xi (v) \,\nabla v\big )+\mu \, u\,(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.}...

Full description

Saved in:
Bibliographic Details
Main Author: Baghaei, Khadijeh
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.605/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206194832146432
author Baghaei, Khadijeh
author_facet Baghaei, Khadijeh
author_sort Baghaei, Khadijeh
collection DOAJ
description This paper deals with the following chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \,\nabla u-u \,\xi (v) \,\nabla v\big )+\mu \, u\,(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^{n}, n\ge 2,$ with smooth boundary. Here, the functions $\gamma (v)$ and $\xi (v)$ are as: \begin{equation*} \gamma (v)=(1+v)^{-k}\quad \mbox {and} \quad \xi (v)=-(1-\alpha )\,\gamma ^{\prime }(v), \end{equation*} where $k>0$ and $\alpha \in (0,1).$For the above system, we prove that the corresponding initial boundary value problem admits a unique global classical solution which is uniformly-in-time bounded. This result is obtained under some conditions on initial value $ v_{0}$ and $\mu $ and without any restriction on $k$ and $\alpha .$ The obtained result extends the recent results obtained for this problem.
format Article
id doaj-art-df246b0479ee4f34ae07974168e1c2d9
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-df246b0479ee4f34ae07974168e1c2d92025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101131114510.5802/crmath.60510.5802/crmath.605Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic sourceBaghaei, KhadijehThis paper deals with the following chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \,\nabla u-u \,\xi (v) \,\nabla v\big )+\mu \, u\,(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^{n}, n\ge 2,$ with smooth boundary. Here, the functions $\gamma (v)$ and $\xi (v)$ are as: \begin{equation*} \gamma (v)=(1+v)^{-k}\quad \mbox {and} \quad \xi (v)=-(1-\alpha )\,\gamma ^{\prime }(v), \end{equation*} where $k>0$ and $\alpha \in (0,1).$For the above system, we prove that the corresponding initial boundary value problem admits a unique global classical solution which is uniformly-in-time bounded. This result is obtained under some conditions on initial value $ v_{0}$ and $\mu $ and without any restriction on $k$ and $\alpha .$ The obtained result extends the recent results obtained for this problem.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.605/
spellingShingle Baghaei, Khadijeh
Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
Comptes Rendus. Mathématique
title Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
title_full Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
title_fullStr Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
title_full_unstemmed Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
title_short Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
title_sort global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.605/
work_keys_str_mv AT baghaeikhadijeh globalboundednessofsolutionstoachemotaxisconsumptionmodelwithsignaldependentmotilityandlogisticsource