A deep ensemble learning framework for glioma segmentation and grading prediction
Abstract The segmentation and risk grade prediction of gliomas based on preoperative multimodal magnetic resonance imaging (MRI) are crucial tasks in computer-aided diagnosis. Due to the significant heterogeneity between and within tumors, existing methods mainly rely on single-task approaches, over...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-025-87127-z |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The segmentation and risk grade prediction of gliomas based on preoperative multimodal magnetic resonance imaging (MRI) are crucial tasks in computer-aided diagnosis. Due to the significant heterogeneity between and within tumors, existing methods mainly rely on single-task approaches, overlooking the inherent correlation between segmentation and grading tasks. Furthermore, the limited availability of glioma grading data presents further challenges. To address these issues, we propose a deep-ensemble learning framework based on multimodal MRI and the U-Net model, which simultaneously performs glioma segmentation and risk grade prediction. We introduce asymmetric convolution and dual-domain attention in the encoder, fully integrating effective information from different modalities, enhancing the extraction of features from critical regions, and constructing a dual-branch decoder that combines spatial features and global semantic information for both segmentation and grading. In addition, we propose a weighted composite adaptive loss function to balance the optimization objectives of the two tasks. Our experimental results on the BraTS dataset demonstrate that our method outperforms state-of-the-art methods, yielding superior segmentation accuracy and precise risk grade prediction. |
---|---|
ISSN: | 2045-2322 |