The zero dispersion limit for the Benjamin–Ono equation on the line

We identify the zero dispersion limit of a solution of the Benjamin–Ono equation on the line corresponding to every initial datum in $L^2(\mathbb{R})\cap L^\infty (\mathbb{R})$. We infer a maximum principle and a local smoothing property for this limit. The proof is based on an explicit formula for...

Full description

Saved in:
Bibliographic Details
Main Author: Gérard, Patrick
Format: Article
Language:English
Published: Académie des sciences 2024-07-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.575/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206272658505728
author Gérard, Patrick
author_facet Gérard, Patrick
author_sort Gérard, Patrick
collection DOAJ
description We identify the zero dispersion limit of a solution of the Benjamin–Ono equation on the line corresponding to every initial datum in $L^2(\mathbb{R})\cap L^\infty (\mathbb{R})$. We infer a maximum principle and a local smoothing property for this limit. The proof is based on an explicit formula for the Benjamin–Ono equation and on the combination of calculations in the special case of rational initial data, with approximation arguments. We also investigate the special case of an initial datum equal to the characteristic function of a finite interval, and prove the lack of semigroup property for this zero dispersion limit.
format Article
id doaj-art-e346739a7704496f8f8a2c9fb9152113
institution Kabale University
issn 1778-3569
language English
publishDate 2024-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-e346739a7704496f8f8a2c9fb91521132025-02-07T11:21:51ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-07-01362G661963410.5802/crmath.57510.5802/crmath.575The zero dispersion limit for the Benjamin–Ono equation on the lineGérard, Patrick0Université Paris–Saclay, Laboratoire de Mathématiques d’Orsay, CNRS, UMR 8628, 91405 Orsay, FranceWe identify the zero dispersion limit of a solution of the Benjamin–Ono equation on the line corresponding to every initial datum in $L^2(\mathbb{R})\cap L^\infty (\mathbb{R})$. We infer a maximum principle and a local smoothing property for this limit. The proof is based on an explicit formula for the Benjamin–Ono equation and on the combination of calculations in the special case of rational initial data, with approximation arguments. We also investigate the special case of an initial datum equal to the characteristic function of a finite interval, and prove the lack of semigroup property for this zero dispersion limit.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.575/
spellingShingle Gérard, Patrick
The zero dispersion limit for the Benjamin–Ono equation on the line
Comptes Rendus. Mathématique
title The zero dispersion limit for the Benjamin–Ono equation on the line
title_full The zero dispersion limit for the Benjamin–Ono equation on the line
title_fullStr The zero dispersion limit for the Benjamin–Ono equation on the line
title_full_unstemmed The zero dispersion limit for the Benjamin–Ono equation on the line
title_short The zero dispersion limit for the Benjamin–Ono equation on the line
title_sort zero dispersion limit for the benjamin ono equation on the line
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.575/
work_keys_str_mv AT gerardpatrick thezerodispersionlimitforthebenjaminonoequationontheline
AT gerardpatrick zerodispersionlimitforthebenjaminonoequationontheline