On $p$-convexification of the Banach-Kantorovich lattice

Let $B$ be a complete Boolean algebra, $Q(B)$ the Stone compact of $B$, and let $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. Let $(E,\|\cdot\|_{E}) \sub...

Full description

Saved in:
Bibliographic Details
Main Author: Gavhar B. Zakirova
Format: Article
Language:English
Published: EJAAM 2024-12-01
Series:E-Journal of Analysis and Applied Mathematics
Subjects:
Online Access:https://ejaam.org/articles/2024/10.62780-ejaam-2024-004.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823864943596797952
author Gavhar B. Zakirova
author_facet Gavhar B. Zakirova
author_sort Gavhar B. Zakirova
collection DOAJ
description Let $B$ be a complete Boolean algebra, $Q(B)$ the Stone compact of $B$, and let $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. Let $(E,\|\cdot\|_{E}) \subset C_\infty (Q(B))$ be a Banach-Kantorovich lattice over the algebra $L^0(\Omega)$ of equivalence classes of almost everywhere finite real-valued measurable functions on a measurable space $(\Omega, \Sigma, \mu)$ with $\sigma$-finite measure $\mu$. The paper defines the $p$-convexification of the Banach-Kantorovich lattice $(E,\|\cdot\|_{E})$ and proves that it is also a Banach-Kantorovich lattice over $L^0(\Omega)$.
format Article
id doaj-art-e35b5a82f2704a41aa37addd447c3f12
institution Kabale University
issn 2544-9990
language English
publishDate 2024-12-01
publisher EJAAM
record_format Article
series E-Journal of Analysis and Applied Mathematics
spelling doaj-art-e35b5a82f2704a41aa37addd447c3f122025-02-08T18:35:22ZengEJAAME-Journal of Analysis and Applied Mathematics2544-99902024-12-01202410.62780/ejaam/2024-004On $p$-convexification of the Banach-Kantorovich latticeGavhar B. Zakirova0Tashkent State Transport University, 1, Temiryolchilar street, Tashkent, 100167, UzbekistanLet $B$ be a complete Boolean algebra, $Q(B)$ the Stone compact of $B$, and let $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. Let $(E,\|\cdot\|_{E}) \subset C_\infty (Q(B))$ be a Banach-Kantorovich lattice over the algebra $L^0(\Omega)$ of equivalence classes of almost everywhere finite real-valued measurable functions on a measurable space $(\Omega, \Sigma, \mu)$ with $\sigma$-finite measure $\mu$. The paper defines the $p$-convexification of the Banach-Kantorovich lattice $(E,\|\cdot\|_{E})$ and proves that it is also a Banach-Kantorovich lattice over $L^0(\Omega)$.https://ejaam.org/articles/2024/10.62780-ejaam-2024-004.pdfp-convexificationmaharam measurebanach-kantorovich space
spellingShingle Gavhar B. Zakirova
On $p$-convexification of the Banach-Kantorovich lattice
E-Journal of Analysis and Applied Mathematics
p-convexification
maharam measure
banach-kantorovich space
title On $p$-convexification of the Banach-Kantorovich lattice
title_full On $p$-convexification of the Banach-Kantorovich lattice
title_fullStr On $p$-convexification of the Banach-Kantorovich lattice
title_full_unstemmed On $p$-convexification of the Banach-Kantorovich lattice
title_short On $p$-convexification of the Banach-Kantorovich lattice
title_sort on p convexification of the banach kantorovich lattice
topic p-convexification
maharam measure
banach-kantorovich space
url https://ejaam.org/articles/2024/10.62780-ejaam-2024-004.pdf
work_keys_str_mv AT gavharbzakirova onpconvexificationofthebanachkantorovichlattice