A finite element method for a two-dimensional Pucci equation

A nonlinear least-squares finite element method for strong solutions of the Dirichlet boundary value problem of a two-dimensional Pucci equation on convex polygonal domains is investigated in this paper. We obtain a priori and a posteriori error estimates and present corroborating numerical results,...

Full description

Saved in:
Bibliographic Details
Main Authors: Brenner, Susanne C., Sung, Li-yeng, Tan, Zhiyu
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.224/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206045525409792
author Brenner, Susanne C.
Sung, Li-yeng
Tan, Zhiyu
author_facet Brenner, Susanne C.
Sung, Li-yeng
Tan, Zhiyu
author_sort Brenner, Susanne C.
collection DOAJ
description A nonlinear least-squares finite element method for strong solutions of the Dirichlet boundary value problem of a two-dimensional Pucci equation on convex polygonal domains is investigated in this paper. We obtain a priori and a posteriori error estimates and present corroborating numerical results, where the discrete nonsmooth and nonlinear optimization problems are solved by an active set method and an alternating direction method with multipliers.
format Article
id doaj-art-e6b480eda1dc4261a572dd30f05d6f12
institution Kabale University
issn 1873-7234
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-e6b480eda1dc4261a572dd30f05d6f122025-02-07T13:46:20ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342023-11-01351S126127610.5802/crmeca.22410.5802/crmeca.224A finite element method for a two-dimensional Pucci equationBrenner, Susanne C.0Sung, Li-yeng1Tan, Zhiyu2Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USADepartment of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USACenter for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USAA nonlinear least-squares finite element method for strong solutions of the Dirichlet boundary value problem of a two-dimensional Pucci equation on convex polygonal domains is investigated in this paper. We obtain a priori and a posteriori error estimates and present corroborating numerical results, where the discrete nonsmooth and nonlinear optimization problems are solved by an active set method and an alternating direction method with multipliers.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.224/Pucci’s equationfinite element methodstrong solutiona priori and a posteriori error estimatesnonlinear least-squaresactive set methodADMM
spellingShingle Brenner, Susanne C.
Sung, Li-yeng
Tan, Zhiyu
A finite element method for a two-dimensional Pucci equation
Comptes Rendus. Mécanique
Pucci’s equation
finite element method
strong solution
a priori and a posteriori error estimates
nonlinear least-squares
active set method
ADMM
title A finite element method for a two-dimensional Pucci equation
title_full A finite element method for a two-dimensional Pucci equation
title_fullStr A finite element method for a two-dimensional Pucci equation
title_full_unstemmed A finite element method for a two-dimensional Pucci equation
title_short A finite element method for a two-dimensional Pucci equation
title_sort finite element method for a two dimensional pucci equation
topic Pucci’s equation
finite element method
strong solution
a priori and a posteriori error estimates
nonlinear least-squares
active set method
ADMM
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.224/
work_keys_str_mv AT brennersusannec afiniteelementmethodforatwodimensionalpucciequation
AT sungliyeng afiniteelementmethodforatwodimensionalpucciequation
AT tanzhiyu afiniteelementmethodforatwodimensionalpucciequation
AT brennersusannec finiteelementmethodforatwodimensionalpucciequation
AT sungliyeng finiteelementmethodforatwodimensionalpucciequation
AT tanzhiyu finiteelementmethodforatwodimensionalpucciequation