Proactive Distributed Emergency Response With Heterogeneous Tasks Allocation
Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring these inherent interdependencies while making current dep...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2025-01-01
|
Series: | International Journal of Distributed Sensor Networks |
Online Access: | http://dx.doi.org/10.1155/dsn/5552310 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206988602081280 |
---|---|
author | Justice Darko Hyoshin Park |
author_facet | Justice Darko Hyoshin Park |
author_sort | Justice Darko |
collection | DOAJ |
description | Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring these inherent interdependencies while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences and those between resource availability in near-future requests and the anticipated duration of the immediate incident request, should be considered through a look-ahead model when making current-stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate unmanned aerial vehicles (UAVs). The UAVs’ role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAVs’ active sensing can shorten response time of emergency vehicles and reduce uncertainties associated with the estimated incident delay impact. |
format | Article |
id | doaj-art-eb11cb88b3b6444788c2bcc2df057995 |
institution | Kabale University |
issn | 1550-1477 |
language | English |
publishDate | 2025-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Distributed Sensor Networks |
spelling | doaj-art-eb11cb88b3b6444788c2bcc2df0579952025-02-07T00:47:30ZengWileyInternational Journal of Distributed Sensor Networks1550-14772025-01-01202510.1155/dsn/5552310Proactive Distributed Emergency Response With Heterogeneous Tasks AllocationJustice Darko0Hyoshin Park1Information Technology DepartmentDepartment of Engineering Management and Systems EngineeringTraditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring these inherent interdependencies while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences and those between resource availability in near-future requests and the anticipated duration of the immediate incident request, should be considered through a look-ahead model when making current-stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate unmanned aerial vehicles (UAVs). The UAVs’ role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAVs’ active sensing can shorten response time of emergency vehicles and reduce uncertainties associated with the estimated incident delay impact.http://dx.doi.org/10.1155/dsn/5552310 |
spellingShingle | Justice Darko Hyoshin Park Proactive Distributed Emergency Response With Heterogeneous Tasks Allocation International Journal of Distributed Sensor Networks |
title | Proactive Distributed Emergency Response With Heterogeneous Tasks Allocation |
title_full | Proactive Distributed Emergency Response With Heterogeneous Tasks Allocation |
title_fullStr | Proactive Distributed Emergency Response With Heterogeneous Tasks Allocation |
title_full_unstemmed | Proactive Distributed Emergency Response With Heterogeneous Tasks Allocation |
title_short | Proactive Distributed Emergency Response With Heterogeneous Tasks Allocation |
title_sort | proactive distributed emergency response with heterogeneous tasks allocation |
url | http://dx.doi.org/10.1155/dsn/5552310 |
work_keys_str_mv | AT justicedarko proactivedistributedemergencyresponsewithheterogeneoustasksallocation AT hyoshinpark proactivedistributedemergencyresponsewithheterogeneoustasksallocation |