Granular media equation with double-well external landscape: limiting steady state

In this paper, we give a simple condition on the initial state of the granular media equation which ensures that the limit as the time goes to infinity is the unique steady state with positive center of mass. To do so, we use functional inequalities, Laplace method and McKean–Vlasov diffusion (which...

Full description

Saved in:
Bibliographic Details
Main Author: Tugaut, Julian
Format: Article
Language:English
Published: Académie des sciences 2024-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.595/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206275110076416
author Tugaut, Julian
author_facet Tugaut, Julian
author_sort Tugaut, Julian
collection DOAJ
description In this paper, we give a simple condition on the initial state of the granular media equation which ensures that the limit as the time goes to infinity is the unique steady state with positive center of mass. To do so, we use functional inequalities, Laplace method and McKean–Vlasov diffusion (which corresponds to the probabilistic interpretation of the granular media equation).
format Article
id doaj-art-ec96eda8d9d143df83554a469c116814
institution Kabale University
issn 1778-3569
language English
publishDate 2024-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-ec96eda8d9d143df83554a469c1168142025-02-07T11:22:28ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-09-01362G777577810.5802/crmath.59510.5802/crmath.595Granular media equation with double-well external landscape: limiting steady stateTugaut, Julian0https://orcid.org/0000-0001-9060-653XUniversité Jean Monnet, CNRS UMR 5208, Institut Camille Jordan, Maison de l’Université, 10 rue Tréfilerie, CS 82301, 42023 Saint-Étienne Cedex 2, FranceIn this paper, we give a simple condition on the initial state of the granular media equation which ensures that the limit as the time goes to infinity is the unique steady state with positive center of mass. To do so, we use functional inequalities, Laplace method and McKean–Vlasov diffusion (which corresponds to the probabilistic interpretation of the granular media equation).https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.595/
spellingShingle Tugaut, Julian
Granular media equation with double-well external landscape: limiting steady state
Comptes Rendus. Mathématique
title Granular media equation with double-well external landscape: limiting steady state
title_full Granular media equation with double-well external landscape: limiting steady state
title_fullStr Granular media equation with double-well external landscape: limiting steady state
title_full_unstemmed Granular media equation with double-well external landscape: limiting steady state
title_short Granular media equation with double-well external landscape: limiting steady state
title_sort granular media equation with double well external landscape limiting steady state
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.595/
work_keys_str_mv AT tugautjulian granularmediaequationwithdoublewellexternallandscapelimitingsteadystate