Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku

Unit Pusat Terpadu Perpustakaan merupakan perpustakaan pusat yang ada di Universitas Lambung Mangkurat. Perpustakaan ini mempunyai sistem pencarian buku namun sistem tersebut belum adanya fitur rekomendasi buku sehingga anggota menjadi kesulitan dalam melakukan pencarian buku yang sesuai dengan kein...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuslena Sari, Andreyan RIzky Baskara, Puguh Budi Prakoso, Noorhanida Royani
Format: Article
Language:Indonesian
Published: University of Brawijaya 2022-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/5709
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858592993771520
author Yuslena Sari
Andreyan RIzky Baskara
Puguh Budi Prakoso
Noorhanida Royani
author_facet Yuslena Sari
Andreyan RIzky Baskara
Puguh Budi Prakoso
Noorhanida Royani
author_sort Yuslena Sari
collection DOAJ
description Unit Pusat Terpadu Perpustakaan merupakan perpustakaan pusat yang ada di Universitas Lambung Mangkurat. Perpustakaan ini mempunyai sistem pencarian buku namun sistem tersebut belum adanya fitur rekomendasi buku sehingga anggota menjadi kesulitan dalam melakukan pencarian buku yang sesuai dengan keinginan anggota. Oleh karena itu, dengan adanya rekomendasi buku atau saran buku yang lain dapat menjadi alternatif untuk membantu anggota dalam melakukan pencarian buku yang sesuai. Dalam penelitian ini menggunakan perbandingan pembobotan kata TF-IDF dan TF-RF dengan weighted tree similarity sebagai pengukur kemiripan diantara beberapa data dengan parameter tree yang sudah ditentukan dan dilakukan perbandingan perhitungan dengan menghitung tf-idf dengan tf-rf menggunakan perhitungan excel mendapatkan nilai yang berbeda antara tf-idf dengan tf-rf, pembobotan tf-idf dapat mengukur kemiripan antara dokumen dan kata kunci buku yang paling mirip dengan buku yang dianggap paling relevan. Sehingga anggota memasukan kata kunci kemudian akan menemukan kemiripan buku dari kata kunci yang dimasukan sebelumnya namun untuk pembobotan tf-rf memberikan kata kunci dari setiap kategori. Hasil perbandingan yang di dapat yaitu 96% untuk tf-idf dan 98% untuk tf-rf. Sistem ini menggunakan bahasa pemrograman python dengan web framework django.   Abstract The Central Integrated Library Unit is the central library at Lambung Mangkurat University. This library has a book search system but the system does not have a book recommendation feature so that members find it difficult to search for books that match the wishes of members. Therefore, the existence of book recommendations or other book suggestions can be an alternative to assist members in searching for suiTabel books. In this study using a comparison of the weighting of the words TF-IDF and TF-RF with weighted tree similarity as a measure of the similarity between several data and a comparison of calculations is carried out by calculating tf-idf with tf-rf using excel calculations to get different values between tf-idf and tf -rf, tf-idf weighting can measure the similarity between documents and keywords of the book that is most similar to the book that is considered the most relevant. So that members enter keywords and then find the similarity of books from the keywords entered previously but for weighting tf-rf provides keywords from each category. The comparison results obtained are 76% for tf-idf and 80% for tf-rf. This system uses the python programming language with the django web framework.
format Article
id doaj-art-eccd5361053549e7abf1317448384843
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2022-12-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-eccd5361053549e7abf13174483848432025-02-11T10:41:43ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792022-12-019610.25126/jtiik.20229357091004Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi BukuYuslena Sari0Andreyan RIzky Baskara1Puguh Budi Prakoso2Noorhanida Royani3Universitas Lambung Mangkurat, BanjarmasinUniversitas Lambung Mangkurat, BanjarmasinUniversitas Lambung Mangkurat, BanjarmasinUniversitas Lambung Mangkurat, BanjarmasinUnit Pusat Terpadu Perpustakaan merupakan perpustakaan pusat yang ada di Universitas Lambung Mangkurat. Perpustakaan ini mempunyai sistem pencarian buku namun sistem tersebut belum adanya fitur rekomendasi buku sehingga anggota menjadi kesulitan dalam melakukan pencarian buku yang sesuai dengan keinginan anggota. Oleh karena itu, dengan adanya rekomendasi buku atau saran buku yang lain dapat menjadi alternatif untuk membantu anggota dalam melakukan pencarian buku yang sesuai. Dalam penelitian ini menggunakan perbandingan pembobotan kata TF-IDF dan TF-RF dengan weighted tree similarity sebagai pengukur kemiripan diantara beberapa data dengan parameter tree yang sudah ditentukan dan dilakukan perbandingan perhitungan dengan menghitung tf-idf dengan tf-rf menggunakan perhitungan excel mendapatkan nilai yang berbeda antara tf-idf dengan tf-rf, pembobotan tf-idf dapat mengukur kemiripan antara dokumen dan kata kunci buku yang paling mirip dengan buku yang dianggap paling relevan. Sehingga anggota memasukan kata kunci kemudian akan menemukan kemiripan buku dari kata kunci yang dimasukan sebelumnya namun untuk pembobotan tf-rf memberikan kata kunci dari setiap kategori. Hasil perbandingan yang di dapat yaitu 96% untuk tf-idf dan 98% untuk tf-rf. Sistem ini menggunakan bahasa pemrograman python dengan web framework django.   Abstract The Central Integrated Library Unit is the central library at Lambung Mangkurat University. This library has a book search system but the system does not have a book recommendation feature so that members find it difficult to search for books that match the wishes of members. Therefore, the existence of book recommendations or other book suggestions can be an alternative to assist members in searching for suiTabel books. In this study using a comparison of the weighting of the words TF-IDF and TF-RF with weighted tree similarity as a measure of the similarity between several data and a comparison of calculations is carried out by calculating tf-idf with tf-rf using excel calculations to get different values between tf-idf and tf -rf, tf-idf weighting can measure the similarity between documents and keywords of the book that is most similar to the book that is considered the most relevant. So that members enter keywords and then find the similarity of books from the keywords entered previously but for weighting tf-rf provides keywords from each category. The comparison results obtained are 76% for tf-idf and 80% for tf-rf. This system uses the python programming language with the django web framework. https://jtiik.ub.ac.id/index.php/jtiik/article/view/5709
spellingShingle Yuslena Sari
Andreyan RIzky Baskara
Puguh Budi Prakoso
Noorhanida Royani
Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku
Jurnal Teknologi Informasi dan Ilmu Komputer
title Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku
title_full Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku
title_fullStr Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku
title_full_unstemmed Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku
title_short Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku
title_sort perbandingan metode pembobotan tf rf dan tf idf dikombinasikan dengan weighted tree similarity untuk sistem rekomendasi buku
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/5709
work_keys_str_mv AT yuslenasari perbandinganmetodepembobotantfrfdantfidfdikombinasikandenganweightedtreesimilarityuntuksistemrekomendasibuku
AT andreyanrizkybaskara perbandinganmetodepembobotantfrfdantfidfdikombinasikandenganweightedtreesimilarityuntuksistemrekomendasibuku
AT puguhbudiprakoso perbandinganmetodepembobotantfrfdantfidfdikombinasikandenganweightedtreesimilarityuntuksistemrekomendasibuku
AT noorhanidaroyani perbandinganmetodepembobotantfrfdantfidfdikombinasikandenganweightedtreesimilarityuntuksistemrekomendasibuku