Optimal $L^2$ Extensions of Openness Type and Related Topics

We establish several optimal $L^2$ extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal $L^2$ extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and it...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Wang, Zhou, Xiangyu
Format: Article
Language:English
Published: Académie des sciences 2023-03-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.437/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206276701814784
author Xu, Wang
Zhou, Xiangyu
author_facet Xu, Wang
Zhou, Xiangyu
author_sort Xu, Wang
collection DOAJ
description We establish several optimal $L^2$ extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal $L^2$ extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and its generalizations, which is based on a log-concavity for certain minimal $L^2$ integrals.
format Article
id doaj-art-f3bedf292d054d328b65e369e838accb
institution Kabale University
issn 1778-3569
language English
publishDate 2023-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-f3bedf292d054d328b65e369e838accb2025-02-07T11:07:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-03-01361G367968310.5802/crmath.43710.5802/crmath.437Optimal $L^2$ Extensions of Openness Type and Related TopicsXu, Wang0Zhou, Xiangyu1School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. ChinaInstitute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P. R. ChinaWe establish several optimal $L^2$ extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal $L^2$ extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and its generalizations, which is based on a log-concavity for certain minimal $L^2$ integrals.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.437/
spellingShingle Xu, Wang
Zhou, Xiangyu
Optimal $L^2$ Extensions of Openness Type and Related Topics
Comptes Rendus. Mathématique
title Optimal $L^2$ Extensions of Openness Type and Related Topics
title_full Optimal $L^2$ Extensions of Openness Type and Related Topics
title_fullStr Optimal $L^2$ Extensions of Openness Type and Related Topics
title_full_unstemmed Optimal $L^2$ Extensions of Openness Type and Related Topics
title_short Optimal $L^2$ Extensions of Openness Type and Related Topics
title_sort optimal l 2 extensions of openness type and related topics
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.437/
work_keys_str_mv AT xuwang optimall2extensionsofopennesstypeandrelatedtopics
AT zhouxiangyu optimall2extensionsofopennesstypeandrelatedtopics