On weak laws of large numbers for maximal partial sums of pairwise independent random variables

This paper develops Rio’s method [11] to prove the weak law of large numbers for maximal partial sums of pairwise independent random variables. The method allows us to avoid using the Kolmogorov maximal inequality. As an application, a weak law of large numbers for maximal partial sums of pairwise i...

Full description

Saved in:
Bibliographic Details
Main Author: Thành, Lê Vǎn
Format: Article
Language:English
Published: Académie des sciences 2023-03-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.387/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206279406092288
author Thành, Lê Vǎn
author_facet Thành, Lê Vǎn
author_sort Thành, Lê Vǎn
collection DOAJ
description This paper develops Rio’s method [11] to prove the weak law of large numbers for maximal partial sums of pairwise independent random variables. The method allows us to avoid using the Kolmogorov maximal inequality. As an application, a weak law of large numbers for maximal partial sums of pairwise independent random variables under a uniform integrability condition is also established. The sharpness of the result is illustrated by an example.
format Article
id doaj-art-fb29a6e06e994c0db8f1a35f45ef3b0b
institution Kabale University
issn 1778-3569
language English
publishDate 2023-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-fb29a6e06e994c0db8f1a35f45ef3b0b2025-02-07T11:07:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-03-01361G357758510.5802/crmath.38710.5802/crmath.387On weak laws of large numbers for maximal partial sums of pairwise independent random variablesThành, Lê Vǎn0Department of Mathematics, Vinh University, 182 Le Duan, Vinh, Nghe An, VietnamThis paper develops Rio’s method [11] to prove the weak law of large numbers for maximal partial sums of pairwise independent random variables. The method allows us to avoid using the Kolmogorov maximal inequality. As an application, a weak law of large numbers for maximal partial sums of pairwise independent random variables under a uniform integrability condition is also established. The sharpness of the result is illustrated by an example.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.387/
spellingShingle Thành, Lê Vǎn
On weak laws of large numbers for maximal partial sums of pairwise independent random variables
Comptes Rendus. Mathématique
title On weak laws of large numbers for maximal partial sums of pairwise independent random variables
title_full On weak laws of large numbers for maximal partial sums of pairwise independent random variables
title_fullStr On weak laws of large numbers for maximal partial sums of pairwise independent random variables
title_full_unstemmed On weak laws of large numbers for maximal partial sums of pairwise independent random variables
title_short On weak laws of large numbers for maximal partial sums of pairwise independent random variables
title_sort on weak laws of large numbers for maximal partial sums of pairwise independent random variables
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.387/
work_keys_str_mv AT thanhlevan onweaklawsoflargenumbersformaximalpartialsumsofpairwiseindependentrandomvariables