A note on singular oscillatory integrals with certain rational phases
Let $\Omega $ be homogeneous of degree zero with mean value zero, $P$ and $Q$ real polynomials on $\mathbb{R}^n$ with $Q(0)=0$ and $\Omega \in B_q^{0,0}(S^{n-1})$ for some $q>1.$ This note extends and improves a classical result of Stein and Wainger (Ann. Math. Stud. 112, pp. 307-355, (1986)) to...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-01-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.418/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206279898923008 |
---|---|
author | Wang, Chenyan Wu, Huoxiong |
author_facet | Wang, Chenyan Wu, Huoxiong |
author_sort | Wang, Chenyan |
collection | DOAJ |
description | Let $\Omega $ be homogeneous of degree zero with mean value zero, $P$ and $Q$ real polynomials on $\mathbb{R}^n$ with $Q(0)=0$ and $\Omega \in B_q^{0,0}(S^{n-1})$ for some $q>1.$ This note extends and improves a classical result of Stein and Wainger (Ann. Math. Stud. 112, pp. 307-355, (1986)) to the following general form
\[ \left|\text{p.~v.}\int _{\mathbb{R}^n}e^{i(P(x)+1/Q(x))}\frac{\Omega (x/|x|)}{|x|^n}dx\right|\le B, \]
where $B$ depend only on $\Vert \Omega \Vert _{B_q^{0,0}(S^{n-1})}$, $n$ and the degrees of $P$ and $Q$, but not on their coefficients. |
format | Article |
id | doaj-art-fca3bdd3bba4473388db3284f1314c40 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-01-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-fca3bdd3bba4473388db3284f1314c402025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G136337010.5802/crmath.41810.5802/crmath.418A note on singular oscillatory integrals with certain rational phasesWang, Chenyan0Wu, Huoxiong1School of Mathematical Sciences, Xiamen University, Xiamen 361005, ChinaSchool of Mathematical Sciences, Xiamen University, Xiamen 361005, ChinaLet $\Omega $ be homogeneous of degree zero with mean value zero, $P$ and $Q$ real polynomials on $\mathbb{R}^n$ with $Q(0)=0$ and $\Omega \in B_q^{0,0}(S^{n-1})$ for some $q>1.$ This note extends and improves a classical result of Stein and Wainger (Ann. Math. Stud. 112, pp. 307-355, (1986)) to the following general form \[ \left|\text{p.~v.}\int _{\mathbb{R}^n}e^{i(P(x)+1/Q(x))}\frac{\Omega (x/|x|)}{|x|^n}dx\right|\le B, \] where $B$ depend only on $\Vert \Omega \Vert _{B_q^{0,0}(S^{n-1})}$, $n$ and the degrees of $P$ and $Q$, but not on their coefficients.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.418/ |
spellingShingle | Wang, Chenyan Wu, Huoxiong A note on singular oscillatory integrals with certain rational phases Comptes Rendus. Mathématique |
title | A note on singular oscillatory integrals with certain rational phases |
title_full | A note on singular oscillatory integrals with certain rational phases |
title_fullStr | A note on singular oscillatory integrals with certain rational phases |
title_full_unstemmed | A note on singular oscillatory integrals with certain rational phases |
title_short | A note on singular oscillatory integrals with certain rational phases |
title_sort | note on singular oscillatory integrals with certain rational phases |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.418/ |
work_keys_str_mv | AT wangchenyan anoteonsingularoscillatoryintegralswithcertainrationalphases AT wuhuoxiong anoteonsingularoscillatoryintegralswithcertainrationalphases AT wangchenyan noteonsingularoscillatoryintegralswithcertainrationalphases AT wuhuoxiong noteonsingularoscillatoryintegralswithcertainrationalphases |