Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
In this short article we show that if $(X, B)$ is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi :X\dashrightarrow X^{\prime }$ such that $K_{X^{\prime }}+B^{\prime }$ is semi-ample.
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-06-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206280646557696 |
---|---|
author | Das, Omprokash Hacon, Christopher |
author_facet | Das, Omprokash Hacon, Christopher |
author_sort | Das, Omprokash |
collection | DOAJ |
description | In this short article we show that if $(X, B)$ is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi :X\dashrightarrow X^{\prime }$ such that $K_{X^{\prime }}+B^{\prime }$ is semi-ample. |
format | Article |
id | doaj-art-fd7d92a7b98f4dc49d35f71f159bb259 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-06-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-fd7d92a7b98f4dc49d35f71f159bb2592025-02-07T11:13:30ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-06-01362S1839110.5802/crmath.58110.5802/crmath.581Existence of Good Minimal Models for Kähler varieties of Maximal Albanese DimensionDas, Omprokash0Hacon, Christopher1School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, Utah 84112, USAIn this short article we show that if $(X, B)$ is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi :X\dashrightarrow X^{\prime }$ such that $K_{X^{\prime }}+B^{\prime }$ is semi-ample.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/ |
spellingShingle | Das, Omprokash Hacon, Christopher Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension Comptes Rendus. Mathématique |
title | Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension |
title_full | Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension |
title_fullStr | Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension |
title_full_unstemmed | Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension |
title_short | Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension |
title_sort | existence of good minimal models for kahler varieties of maximal albanese dimension |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/ |
work_keys_str_mv | AT dasomprokash existenceofgoodminimalmodelsforkahlervarietiesofmaximalalbanesedimension AT haconchristopher existenceofgoodminimalmodelsforkahlervarietiesofmaximalalbanesedimension |