Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension

In this short article we show that if $(X, B)$ is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi :X\dashrightarrow X^{\prime }$ such that $K_{X^{\prime }}+B^{\prime }$ is semi-ample.

Saved in:
Bibliographic Details
Main Authors: Das, Omprokash, Hacon, Christopher
Format: Article
Language:English
Published: Académie des sciences 2024-06-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206280646557696
author Das, Omprokash
Hacon, Christopher
author_facet Das, Omprokash
Hacon, Christopher
author_sort Das, Omprokash
collection DOAJ
description In this short article we show that if $(X, B)$ is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi :X\dashrightarrow X^{\prime }$ such that $K_{X^{\prime }}+B^{\prime }$ is semi-ample.
format Article
id doaj-art-fd7d92a7b98f4dc49d35f71f159bb259
institution Kabale University
issn 1778-3569
language English
publishDate 2024-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-fd7d92a7b98f4dc49d35f71f159bb2592025-02-07T11:13:30ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-06-01362S1839110.5802/crmath.58110.5802/crmath.581Existence of Good Minimal Models for Kähler varieties of Maximal Albanese DimensionDas, Omprokash0Hacon, Christopher1School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, Utah 84112, USAIn this short article we show that if $(X, B)$ is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi :X\dashrightarrow X^{\prime }$ such that $K_{X^{\prime }}+B^{\prime }$ is semi-ample.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/
spellingShingle Das, Omprokash
Hacon, Christopher
Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
Comptes Rendus. Mathématique
title Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
title_full Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
title_fullStr Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
title_full_unstemmed Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
title_short Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
title_sort existence of good minimal models for kahler varieties of maximal albanese dimension
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/
work_keys_str_mv AT dasomprokash existenceofgoodminimalmodelsforkahlervarietiesofmaximalalbanesedimension
AT haconchristopher existenceofgoodminimalmodelsforkahlervarietiesofmaximalalbanesedimension