Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system

We investigate the loss of spatial coherence of one-dimensional bosonic gases in optical lattices illuminated by a near-resonant excitation laser. Because the atoms recoil in a random direction after each spontaneous emission, the atomic momentum distribution progressively broadens. Equivalently, th...

Full description

Saved in:
Bibliographic Details
Main Authors: Vatré, Rémy, Bouganne, Raphaël, Bosch Aguilera, Manel, Ghermaoui, Alexis, Beugnon, Jérôme, Lopes, Raphael, Gerbier, Fabrice
Format: Article
Language:English
Published: Académie des sciences 2024-03-01
Series:Comptes Rendus. Physique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.166/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825205744364945408
author Vatré, Rémy
Bouganne, Raphaël
Bosch Aguilera, Manel
Ghermaoui, Alexis
Beugnon, Jérôme
Lopes, Raphael
Gerbier, Fabrice
author_facet Vatré, Rémy
Bouganne, Raphaël
Bosch Aguilera, Manel
Ghermaoui, Alexis
Beugnon, Jérôme
Lopes, Raphael
Gerbier, Fabrice
author_sort Vatré, Rémy
collection DOAJ
description We investigate the loss of spatial coherence of one-dimensional bosonic gases in optical lattices illuminated by a near-resonant excitation laser. Because the atoms recoil in a random direction after each spontaneous emission, the atomic momentum distribution progressively broadens. Equivalently, the spatial correlation function (the Fourier-conjugate quantity of the momentum distribution) progressively narrows down as more photons are scattered. Here we measure the correlation function of the matter field for fixed distances corresponding to nearest-neighbor (n-n) and next-nearest-neighbor (n-n-n) sites of the optical lattice as a function of time, hereafter called n-n and n-n-n correlators. For strongly interacting lattice gases, we find that the n-n correlator $C_1$ decays as a power-law at long times, $C_1\propto 1/t^{\alpha }$, in stark contrast with the exponential decay expected for independent particles. The power-law decay reflects a non-trivial dissipative many-body dynamics, where interactions change drastically the interplay between fluorescence destroying spatial coherence, and coherent tunnelling between neighboring sites restoring spatial coherence at short distances. The observed decay exponent $\alpha \approx 0.54(6) $ is in good agreement with the prediction $\alpha =1/2$ from a dissipative Bose–Hubbard model accounting for the fluorescence-induced decoherence. Furthermore, we find that the n-n correlator $C_1$ controls the n-n-n correlator $C_2$ through the relation $C_2 \approx C_1^2$, also in accordance with the dissipative Bose–Hubbard model.
format Article
id doaj-art-fd9d4ad56473468ebe48038e1c13748b
institution Kabale University
issn 1878-1535
language English
publishDate 2024-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Physique
spelling doaj-art-fd9d4ad56473468ebe48038e1c13748b2025-02-07T13:53:12ZengAcadémie des sciencesComptes Rendus. Physique1878-15352024-03-0124S326328410.5802/crphys.16610.5802/crphys.166Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic systemVatré, Rémy0Bouganne, Raphaël1Bosch Aguilera, Manel2Ghermaoui, Alexis3Beugnon, Jérôme4Lopes, Raphael5Gerbier, Fabrice6Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, FranceLaboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, FranceLaboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, FranceLaboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, FranceLaboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, FranceLaboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, FranceLaboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, FranceWe investigate the loss of spatial coherence of one-dimensional bosonic gases in optical lattices illuminated by a near-resonant excitation laser. Because the atoms recoil in a random direction after each spontaneous emission, the atomic momentum distribution progressively broadens. Equivalently, the spatial correlation function (the Fourier-conjugate quantity of the momentum distribution) progressively narrows down as more photons are scattered. Here we measure the correlation function of the matter field for fixed distances corresponding to nearest-neighbor (n-n) and next-nearest-neighbor (n-n-n) sites of the optical lattice as a function of time, hereafter called n-n and n-n-n correlators. For strongly interacting lattice gases, we find that the n-n correlator $C_1$ decays as a power-law at long times, $C_1\propto 1/t^{\alpha }$, in stark contrast with the exponential decay expected for independent particles. The power-law decay reflects a non-trivial dissipative many-body dynamics, where interactions change drastically the interplay between fluorescence destroying spatial coherence, and coherent tunnelling between neighboring sites restoring spatial coherence at short distances. The observed decay exponent $\alpha \approx 0.54(6) $ is in good agreement with the prediction $\alpha =1/2$ from a dissipative Bose–Hubbard model accounting for the fluorescence-induced decoherence. Furthermore, we find that the n-n correlator $C_1$ controls the n-n-n correlator $C_2$ through the relation $C_2 \approx C_1^2$, also in accordance with the dissipative Bose–Hubbard model.https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.166/ultracold atomsquantum gasesoptical latticesdecoherence
spellingShingle Vatré, Rémy
Bouganne, Raphaël
Bosch Aguilera, Manel
Ghermaoui, Alexis
Beugnon, Jérôme
Lopes, Raphael
Gerbier, Fabrice
Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
Comptes Rendus. Physique
ultracold atoms
quantum gases
optical lattices
decoherence
title Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
title_full Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
title_fullStr Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
title_full_unstemmed Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
title_short Dynamics of spatial phase coherence in a dissipative Bose–Hubbard atomic system
title_sort dynamics of spatial phase coherence in a dissipative bose hubbard atomic system
topic ultracold atoms
quantum gases
optical lattices
decoherence
url https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.166/
work_keys_str_mv AT vatreremy dynamicsofspatialphasecoherenceinadissipativebosehubbardatomicsystem
AT bouganneraphael dynamicsofspatialphasecoherenceinadissipativebosehubbardatomicsystem
AT boschaguileramanel dynamicsofspatialphasecoherenceinadissipativebosehubbardatomicsystem
AT ghermaouialexis dynamicsofspatialphasecoherenceinadissipativebosehubbardatomicsystem
AT beugnonjerome dynamicsofspatialphasecoherenceinadissipativebosehubbardatomicsystem
AT lopesraphael dynamicsofspatialphasecoherenceinadissipativebosehubbardatomicsystem
AT gerbierfabrice dynamicsofspatialphasecoherenceinadissipativebosehubbardatomicsystem