Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)

Introduction Artificial Intelligence Ready and Equitable for Diabetes Insights (AI-READI) is a data collection project on type 2 diabetes mellitus (T2DM) to facilitate the widespread use of artificial intelligence and machine learning (AI/ML) approaches to study salutogenesis (transitioning from T2D...

Full description

Saved in:
Bibliographic Details
Main Authors: Gerald McGwin, Linda M Zangwill, Nicholas Evans, Shannon McWeeney, Cecilia S Lee, Bhavesh Patel, Jeffrey C Edberg, Cynthia Owsley, Aaron Lee, Cecilia Lee, Sally L Baxter, Michael Snyder, Samantha Hurst, Nicole Ehrhardt, Christopher Chute, Dawn S Matthies, Julia P Owen, Amir Bahmani, Sally Baxter, Edward Boyko, Aaron Cohen, Jorge Contreras, Garrison Cottrell, Virginia de Sa, Jeffrey Edberg, Irl Hirsch, Michelle Hribar, T.Y. Alvin Liu, Bonnie Maldenado, Sara Singer, Bradley Voytek, Joseph Yracheta, Linda Zangwill
Format: Article
Language:English
Published: BMJ Publishing Group 2025-02-01
Series:BMJ Open
Online Access:https://bmjopen.bmj.com/content/15/2/e097449.full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206764156485632
author Gerald McGwin
Linda M Zangwill
Nicholas Evans
Shannon McWeeney
Cecilia S Lee
Bhavesh Patel
Jeffrey C Edberg
Cynthia Owsley
Aaron Lee
Cecilia Lee
Sally L Baxter
Michael Snyder
Samantha Hurst
Nicole Ehrhardt
Christopher Chute
Dawn S Matthies
Julia P Owen
Amir Bahmani
Sally Baxter
Edward Boyko
Aaron Cohen
Jorge Contreras
Garrison Cottrell
Virginia de Sa
Jeffrey Edberg
Irl Hirsch
Michelle Hribar
T.Y. Alvin Liu
Bonnie Maldenado
Sara Singer
Bradley Voytek
Joseph Yracheta
Linda Zangwill
author_facet Gerald McGwin
Linda M Zangwill
Nicholas Evans
Shannon McWeeney
Cecilia S Lee
Bhavesh Patel
Jeffrey C Edberg
Cynthia Owsley
Aaron Lee
Cecilia Lee
Sally L Baxter
Michael Snyder
Samantha Hurst
Nicole Ehrhardt
Christopher Chute
Dawn S Matthies
Julia P Owen
Amir Bahmani
Sally Baxter
Edward Boyko
Aaron Cohen
Jorge Contreras
Garrison Cottrell
Virginia de Sa
Jeffrey Edberg
Irl Hirsch
Michelle Hribar
T.Y. Alvin Liu
Bonnie Maldenado
Sara Singer
Bradley Voytek
Joseph Yracheta
Linda Zangwill
collection DOAJ
description Introduction Artificial Intelligence Ready and Equitable for Diabetes Insights (AI-READI) is a data collection project on type 2 diabetes mellitus (T2DM) to facilitate the widespread use of artificial intelligence and machine learning (AI/ML) approaches to study salutogenesis (transitioning from T2DM to health resilience). The fundamental rationale for promoting health resilience in T2DM stems from its high prevalence of 10.5% of the world’s adult population and its contribution to many adverse health events.Methods AI-READI is a cross-sectional study whose target enrollment is 4000 people aged 40 and older, triple-balanced by self-reported race/ethnicity (Asian, black, Hispanic, white), T2DM (no diabetes, pre-diabetes and lifestyle-controlled diabetes, diabetes treated with oral medications or non-insulin injections and insulin-controlled diabetes) and biological sex (male, female) (Clinicaltrials.org approval number STUDY00016228). Data are collected in a multivariable protocol containing over 10 domains, including vitals, retinal imaging, electrocardiogram, cognitive function, continuous glucose monitoring, physical activity, home air quality, blood and urine collection for laboratory testing and psychosocial variables including social determinants of health. There are three study sites: Birmingham, Alabama; San Diego, California; and Seattle, Washington.Ethics and dissemination AI-READI aims to establish standards, best practices and guidelines for collection, preparation and sharing of the data for the purposes of AI/ML, including guidance from bioethicists. Following Findable, Accessible, Interoperable, Reusable principles, AI-READI can be viewed as a model for future efforts to develop other medical/health data sets targeted for AI/ML. AI-READI opens the door for novel insights in understanding T2DM salutogenesis. The AI-READI Consortium are disseminating the principles and processes of designing and implementing the AI-READI data set through publications. Those who download and use AI-READI data are encouraged to publish their results in the scientific literature.
format Article
id doaj-art-ff459d63852e4ba7956d93a5bf3d4ae9
institution Kabale University
issn 2044-6055
language English
publishDate 2025-02-01
publisher BMJ Publishing Group
record_format Article
series BMJ Open
spelling doaj-art-ff459d63852e4ba7956d93a5bf3d4ae92025-02-07T06:30:15ZengBMJ Publishing GroupBMJ Open2044-60552025-02-0115210.1136/bmjopen-2024-097449Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) Gerald McGwin0Linda M Zangwill1Nicholas EvansShannon McWeeneyCecilia S Lee2Bhavesh PatelJeffrey C Edberg3Cynthia Owsley4Aaron LeeCecilia LeeSally L Baxter5Michael SnyderSamantha HurstNicole EhrhardtChristopher ChuteDawn S Matthies6Julia P Owen7Amir BahmaniSally BaxterEdward BoykoAaron CohenJorge ContrerasGarrison CottrellVirginia de SaJeffrey EdbergIrl HirschMichelle HribarT.Y. Alvin LiuBonnie MaldenadoSara SingerBradley VoytekJoseph YrachetaLinda Zangwill1 Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA4 Ophthalmology, University of California San Diego, La Jolla, California, USA5 Ophthalmology, University of Washington, Seattle, Washington, USA3 Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA1 Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA4 Ophthalmology, University of California San Diego, La Jolla, California, USA1 Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA5 Ophthalmology, University of Washington, Seattle, Washington, USAIntroduction Artificial Intelligence Ready and Equitable for Diabetes Insights (AI-READI) is a data collection project on type 2 diabetes mellitus (T2DM) to facilitate the widespread use of artificial intelligence and machine learning (AI/ML) approaches to study salutogenesis (transitioning from T2DM to health resilience). The fundamental rationale for promoting health resilience in T2DM stems from its high prevalence of 10.5% of the world’s adult population and its contribution to many adverse health events.Methods AI-READI is a cross-sectional study whose target enrollment is 4000 people aged 40 and older, triple-balanced by self-reported race/ethnicity (Asian, black, Hispanic, white), T2DM (no diabetes, pre-diabetes and lifestyle-controlled diabetes, diabetes treated with oral medications or non-insulin injections and insulin-controlled diabetes) and biological sex (male, female) (Clinicaltrials.org approval number STUDY00016228). Data are collected in a multivariable protocol containing over 10 domains, including vitals, retinal imaging, electrocardiogram, cognitive function, continuous glucose monitoring, physical activity, home air quality, blood and urine collection for laboratory testing and psychosocial variables including social determinants of health. There are three study sites: Birmingham, Alabama; San Diego, California; and Seattle, Washington.Ethics and dissemination AI-READI aims to establish standards, best practices and guidelines for collection, preparation and sharing of the data for the purposes of AI/ML, including guidance from bioethicists. Following Findable, Accessible, Interoperable, Reusable principles, AI-READI can be viewed as a model for future efforts to develop other medical/health data sets targeted for AI/ML. AI-READI opens the door for novel insights in understanding T2DM salutogenesis. The AI-READI Consortium are disseminating the principles and processes of designing and implementing the AI-READI data set through publications. Those who download and use AI-READI data are encouraged to publish their results in the scientific literature.https://bmjopen.bmj.com/content/15/2/e097449.full
spellingShingle Gerald McGwin
Linda M Zangwill
Nicholas Evans
Shannon McWeeney
Cecilia S Lee
Bhavesh Patel
Jeffrey C Edberg
Cynthia Owsley
Aaron Lee
Cecilia Lee
Sally L Baxter
Michael Snyder
Samantha Hurst
Nicole Ehrhardt
Christopher Chute
Dawn S Matthies
Julia P Owen
Amir Bahmani
Sally Baxter
Edward Boyko
Aaron Cohen
Jorge Contreras
Garrison Cottrell
Virginia de Sa
Jeffrey Edberg
Irl Hirsch
Michelle Hribar
T.Y. Alvin Liu
Bonnie Maldenado
Sara Singer
Bradley Voytek
Joseph Yracheta
Linda Zangwill
Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)
BMJ Open
title Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)
title_full Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)
title_fullStr Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)
title_full_unstemmed Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)
title_short Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)
title_sort cross sectional design and protocol for artificial intelligence ready and equitable atlas for diabetes insights ai readi
url https://bmjopen.bmj.com/content/15/2/e097449.full
work_keys_str_mv AT crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT geraldmcgwin crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT lindamzangwill crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT nicholasevans crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT shannonmcweeney crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT ceciliaslee crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT bhaveshpatel crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT jeffreycedberg crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT cynthiaowsley crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT aaronlee crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT cecilialee crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT sallylbaxter crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT michaelsnyder crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT samanthahurst crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT nicoleehrhardt crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT christopherchute crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT dawnsmatthies crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT juliapowen crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT amirbahmani crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT sallybaxter crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT edwardboyko crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT aaroncohen crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT jorgecontreras crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT garrisoncottrell crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT virginiadesa crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT jeffreyedberg crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT irlhirsch crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT michellehribar crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT tyalvinliu crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT bonniemaldenado crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT sarasinger crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT bradleyvoytek crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT josephyracheta crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi
AT lindazangwill crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi